Journal Pre-proof

Reprint of "Selective conversion of CO into ethanol on $\mathrm{Cu}(511)$ surface reconstructed from $\mathrm{Cu}(\mathrm{pc})$: Operando studies by electrochemical scanning tunneling microscopy, mass spectrometry, quartz crystal nanobalance, and infrared spectroscopy"

Jack H. Baricuatro, Youn-Geun Kim, Chu F. Tsang, Alnald C. Javier, Kyle D. Cummins, John C. Hemminger

PII: S1572-6657(20)30985-1
DOI: https://doi.org/10.1016/j.jelechem.2020.114757
Reference: JEAC 114757

To appear in: Journal of Electroanalytical Chemistry

Received date: $\quad 30$ September 2019
Revised date: $\quad 20$ November 2019
Accepted date: 26 November 2019

Please cite this article as: J.H. Baricuatro, Y.-G. Kim, C.F. Tsang, et al., Reprint of "Selective conversion of CO into ethanol on $\mathrm{Cu}(511)$ surface reconstructed from $\mathrm{Cu}(\mathrm{pc})$: Operando studies by electrochemical scanning tunneling microscopy, mass spectrometry, quartz crystal nanobalance, and infrared spectroscopy", Journal of Electroanalytical Chemistry (2019), https://doi.org/10.1016/j.jelechem.2020.114757

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Reprint of "Selective conversion of CO into ethanol on $\mathrm{Cu}(511)$ surface reconstructed from $\mathrm{Cu}(\mathrm{pc})$: Operando studies by electrochemical scanning tunneling microscopy, mass spectrometry, quartz crystal nanobalance, and infrared spectroscopy"

Jack H. Baricuatro ${ }^{\text {a, }}$, , Youn-Geun Kim ${ }_{\perp}{ }^{\text {a, } *}$, Chu F. Tsang ${ }_{\perp}^{\text {a,b }}$, Alnald C. Javier ${ }^{\text {a }}$,
a Joint Center for Artificial Photosynthesis, Division of Chemistry and Chemical Engineering, California Institute of Technolog' Pasu 'ona, CA 91125, United States of America
${ }^{\mathrm{b}}$ Department of Chemistry, University of California, Irvine, Irvine, CA 92697, United States of America

Article history:

Received 30 September 2019
Received in revised form 20 November 2019
Accepted 26 November 2019
Available online xxxx

Keywords:

Electrochemically generated $\mathrm{Cu}(511)$ surface
Operando electrode-surface microscopy
Operando molecular vibrational spectroscopy
CO adsorption on Cu vicinal surface
Selective reduction of CO into ethanol

Abstract

A polycrystalline copper, surface-terminuted by a well-defined (511)-oriented facet, was electrochemically generated 21 by a series of step-wise surface re ons iv tion and iterations of mild oxidative-reductive processes in 0.1 M KOH . The 22 electrochemical reduction of C) c dhe esultant stepped surface was investigated by four surface-sensitive operando 23 methodologies: electrochomic ' scanning tunneling microscopy (STM), electrochemical quartz crystal nanobalance 24 (EQCN), differential e ectro hemı 1 mass spectrometry (DEMS), and polarization-modulation infrared spectroscopy 25 (PMIRS). The steppe. -urf ce catalyzed the facile conversion of CO into ethanol, the exclusive alcohol product at a 26 low overpotential of $-1 . \iota^{-} V$ (SHE) or -0.3 V (RHE). The chemisorption of CO was found to be a necessary prelude 27 to ethanol prod. +ion; i.e. the surface coverages, rather than solution concentrations, of CO and its surface-bound in- 28 termediates primaı. ${ }^{\circ}$ dictate the reaction rates (current densities). Contrary to the expected predominance of 29 undercoordin' .ea 'ap-site reactivity over the coordination chemistry of vicinal surfaces, vibrational spectroscopic ev- 30 idence reveals th $£$ in rolvement of terrace-bound CO adsorbates during the multi-atomic transformations associated 33 with the w.'rctiwn of ethanol.

1. Introduction

Structure-composition-activity correlatio s an ${ }^{\text {traditional guideposts in }}$ the rational discovery of catalysts. Sys naı ~ adt arence to this tenet has ushered the synthesis of countless coordinal η compounds designed to fulfill elemental, electronic, and geometric presc ptions predicted to facilitate target reactions. Homogeneous catalysts active for CO_{2} reduction $\left(\mathrm{CO}_{2} \mathrm{R}\right)$, for instance, manifest high selectivities but only toward the production of carbon monoxide and formic acid in non-aqueous media [1,2]. In artificial photosynthesis that proceeds in water, only copper can sustain the multiple electron-transfer formation of $\mathrm{C}_{1}-\mathrm{C}_{2}$ products with appreciable reaction rates [3]. Specifically, at a potential of -1.45 V (SHE) and a current density of ca. $6 \mathrm{~mA} \mathrm{~cm}{ }^{-2}$ [4], methane, ethylene, and ethanol have individual Faradaic efficiencies $\geq 10 \%$ [4]; these metrics, however, represent meager yields at the micromole scale during an hour-long polarization. Reaction
kinetics at Cu electrodes can be enhanced at higher overpotentials although 58 poor selectivity becomes the trade-off as evidenced by the emergence of fif- 59 teen $\mathrm{CO}_{2} \mathrm{R}$ products [5]. A relatively narrow product distribution is offered 60 by nickel at -1.40 V (SHE) and silver at -1.75 V (SHE) [4] but the dom- 61 inance of hydrogen evolution reaction severely limits methanol and meth- 62 ane production to near trace-level concentrations.

An examination of the rich $\mathrm{CO}_{2} \mathrm{R}$ literature uncovers the fact that the 64 combination of Cu with other metals merely dilutes its inherent ability to 65 catalyze $\mathrm{CO}_{2} \mathrm{R}$, once an accurate accounting of the electrochemically active 66 surface area has been performed [6]. The distinctive electrocatalytic perfor- 67 mance of Cu in its pristine state, therefore, provides impetus for the identi- 68 fication of the particular surface facet responsible for a preferred product or 69 family of products. The endeavor is accomplished by the use of structurally 70 well-defined electrodes prepared, treated, and analyzed according to the 71 protocols of electrochemical surface science. Key events of heterogeneously 72

[^0]catalyzed reactions like the reduction of CO_{2} and CO transpire at the electrical double layer developed at the electrode-electrolyte interface. Adsorbed reaction intermediates of the rate-determining and productdeciding steps are best studied by surface-sensitive techniques; processes at the fluxional diffusion layer, such as mass transport, do not alter the intrinsic catalytic activity but are subject to engineering controls for the performance optimization of $\mathrm{CO}_{2} \mathrm{R}$-based devices. Experimental data acquired from unambiguous surface structures are also invaluable to the calibration of theory-based mechanistic calculations.

The surface sensitivity of $\mathrm{CO}_{2} \mathrm{R}$ on Cu electrocatalysts is demonstrated by the preferential formation, at low overpotentials, of methane on Cu (111) and ethylene on $\mathrm{Cu}(100)$ [6]. Product exclusivity is not fully realized at these low-index facets: At an onset potential of -1.39 V (SHE) in bicarbonate solution with a total current density of $5 \mathrm{~mA} \mathrm{~cm}^{-2}, \mathrm{Cu}(100)$ catalyzes the CO_{2}-to-ethylene conversion at a Faradaic efficiency of 41% albeit with the non-negligible co-formation of methane, hydrogen, and $\mathrm{C}_{2}-\mathrm{C}_{3}$ alcohols [7]. Described in this report is the interfacial chemistry of an electrochemically generated stepped Cu surface that produces ethanol as the sole alcohol product from the reduction of CO. Unlike previous works that employ only pre-electrolysis characterization of vicinal singlecrystal electrodes $[7,8]$, the current investigation assembles operando methodologies that track the product composition, adlattice geometry, surface coverage, and surface coordination of adsorbates during the electroreduction of CO in alkaline solution. Present results are thus examined based on the atomic-level insights established earlier from the seriatim implementation of electrochemical scanning tunneling microscopy (STM), differential electrochemical mass spectrometry (DEMS), and quartz crystal nanobalance (EQCN). The strategic inclusion of electrochemical polarization-modulation infrared spectroscopy (PMIRS) now constitutes a seriatim quadruple combination of surface-sensitive techni ${ }_{1}$ ue: STM-EQCN-DEMS-PMIRS, unprecedented in the conduct of CO reu etir . studies. The non-trivial consolidation of surface vibrational spectroscu ${ }_{1}$ v permits an examination of the role of terrace and step sites in th ${ }^{\text {formation }}$ of C_{2} products.

2. Materials and methods

Chemicals were used as received without further ${ }_{t}$ rificauion. All aqueous solutions were prepared using $18.2 \mathrm{M} \Omega-\mathrm{cm}$ wate. 'Ba. `stead Nanopure System). The blank solution was purged for at le, ${ }^{\text {r }} 301$ in in ultrahigh purity argon (Airgas, Radnor, PA). The alkalin- ${ }^{1}$ ocl. yte solution for the electrochemical reduction of CO consisted (frest y prepared 0.1 M KOH (99.99\% pure, Sigma-Aldrich) bubbled fo. $30 \ldots$. \quad, with high-purity (95%) carbon monoxide (Welding Supply Store, Duic te, CA).

All potentials were expressed in terms .. the standard hydrogen electrode (SHE) scale. The equation $\mathrm{E}_{\text {SHE }}=\mathrm{E}_{\mathrm{RHE}}-0.059 \mathrm{pH}$ interconverts SHE and RHE, where RHE represents the reversible hydrogen electrode. Potentials on the SHE scale relate directly with thermodynamic free-energy changes such as $\Delta \mathrm{G}^{0}=-\mathrm{nF} \mathrm{E}_{\mathrm{SHE}}^{0}$, and are sensitive to changes in pH specifically for processes that involve the $\mathrm{H}^{+} / \mathrm{H}_{2}$ equilibrium.

The operando characterization of the Cu electrode via electrochemical scanning tunneling microscopy (STM) [9], electrochemical quartz crystal nanobalance (EQCN) [10], differential electrochemical mass spectrometry (DEMS) [11], and polarization-modulation infrared spectroscopy (PMIRS) [12] has been described previously at length. Only instrumental details pertinent to the investigation of the reconstruction phenomenon are summarized below.

Except for EQCN, all methods examined a polycrystalline Cu disk treated identically. The electrode (GoodFellow, Coraopolis, PA) was 99.99 \% pure $\mathrm{Cu}, 1.0 \mathrm{~mm}$ in thickness, and 10 mm in diameter. A mirror finish was achieved by metallographically polishing it in a suspension of polycrystalline diamond (Buhler, Lake Bluff, IL) at a grain size of $0.1 \mu \mathrm{~m}$. The disk was rinsed with and sonicated in water, and then transferred to 85% $\mathrm{H}_{3} \mathrm{PO}_{4}$ for a 10 -s electrochemical polish at 2.0 V using a 99.99% pure
platinum wire (Goodfellow) counter electrode. The disk was further rinsed 135 and thereafter covered with protective droplets of electrolyte prior to im- 136 mediate use. A potential of -0.90 V (SHE) was applied for two hours to 137 the Cu electrode while immersed in blank 0.1 M KOH to obtain $\mathrm{Cu}(\mathrm{pc})-138$ [Cu(100)]. The reconstructed surface was subsequently cycled, at least 50139 times between 0.1 V and -0.90 V , to generate $\mathrm{Cu}(\mathrm{pc})-[\mathrm{Cu}(511)][9,13] .140$

Atomic details of the surface reconstruction of the copper electrode 141 were tracked in 0.1 M KOH using a Nanoscope E microscope (Digital Instru- 142 ments, Veeco, Santan Barbara, CA) that was refurbished (Advanced Surface 143 Microscopy, Inc., Indianapolis, IN) and equipped with a three-electrode 144 potentiostat. A Kel-F (Emco Industrial Plastics, Inc., Cedar Grove, NJ) elec- 145 trochemical cell was specially built to accommodate the polycrystalline Cu 146 disk working electrode; a miniature leakless $\mathrm{Ag} / \mathrm{AgCl}(3.4 \mathrm{M} \mathrm{KCl})$ reference 147 electrode (Innovative Instruments, Inc., Tampa, FL); and a 99.99\% pure Pt 148 wire (Goodfellow) counter electrode. The STM tips were prepared from a 149 tungsten wire (Sigma-Aldrich, St. Louis, MO), with a diameter of 150 0.25 mm , electrochemically etched in 1.0 M KOH at 15 V , AC. Transparent 151 nail polish or Apiezoı. « ax was used to coat the tip and minimize Faradaic 152 currents. A high-resolu. i n scanner in a constant-current mode was 153 employed for imag acu isition at the chosen potential. The images were 154 not subjected to any nost ,can processing such as the use of software trans- 155 forms or high- ass " ${ }^{1}$ ters.

156
Operand c. qnge in the mass of the Cu electrode at the nanogram re- 157 gime were . easured by a Seiko-EG\&G QCA922 analyzer (Bio-logic, Knox- 158 ville, $T_{\text {v }}$ ' it t. faced to a Bio-Logic SP-200 potentiostat. A specially 159 const, ted l lectrochemical cell [14] held ports for the introduction of 160 CO intn th, solution and its headspace. Provisions were available for the in- 161 $\cdots+i$ on of a reversible hydrogen electrode (RHE) configured with a Luggin 162 ca , sll ry that hovered close to the working electrode. The counter electrode 163 w. - . coil of gold wire. An AT-cut quartz crystal, coated on both sides with 164 approximately $300-\mathrm{nm}$ thick polycrystalline Cu , served as the resonator- 165 working electrode with a resonance frequency of 9 MHz . Potential- 166 dependent adsorption measurements were acquired while the Cu electrode 167 was in contact with CO-saturated 0.1 M KOH for at least 60 s . The same 168 electrochemical protocol transacted for the Cu disk electrode (vide supra) 169 was followed to create the $\mathrm{Cu}(\mathrm{pc})-[\mathrm{Cu}(100)]$ and $\mathrm{Cu}(\mathrm{pc})-[\mathrm{Cu}(511)] 170$ surfaces.

Mass spectrometric information during potentiostatic experiments was 172 afforded by DEMS. A custom-built three-electrode electrochemical cell 173 was employed in conjunction with an HPR-20 quadrupole mass spectrome- 174 ter (Hiden Analytical, Warrington, England) equipped with a secondary 175 electron multiplier detector set at 950 V with an emission current of 176 $500 \mu \mathrm{~A}$. The working electrode was a polycrystalline Cu disk; and the coun- 177 ter electrode, a 99.99\% pure Pt wire (Goodfellow). The base peak of ethanol 178 at $m / z=31$, indicative of the resonance-stabilized $\left[\mathrm{CH}_{2} \mathrm{OH}\right]^{+}$cation, is 179 shared by other alcohols. Methanol does not register a peak at $m / z=45,180$ which corresponds to the (M-1) oxonium ion species of ethanol formed 181 from loss of a hydrogen radical adjacent to the hydroxyl group [15]. MS sig- 182 nals for ethanol were monitored at $\mathrm{m} / \mathrm{z}=31$ and 45 but, in the established 183 absence of methanol, only the former signal was reported due to its high 184 signal-to-noise ratio.

Vibrational spectroscopic characterization of CO adsorbates at the 186 electrode-electrolyte interface was conducted using a Nicolet 6700 FT-IR 187 spectrometer (Thermo Electron Scientific, Madison, WI) connected to a Ni- 188 colet tabletop optical module (TOM). Nitrogen gas was constantly fed into 189 the appended TOM to create a stable inert atmosphere for the optical ele- 190 ments, polarization modulator and demodulator, and the liquid-nitrogen- 191 cooled narrow-band HgCdTe detector. The polarization state of the IR 192 beam was rapidly switched at a modulation frequency of 50.047 kHz be- 193 tween the s - and p-states using a Hinds PEM-100 ZnSe photoelastic modula- 194 tor (Hind Instruments, Portland, OR). A half-wave retardation setting of 195 $2300 \mathrm{~cm}^{-1}$ was used to optimize signals at the CO frequency region with- 196 out severe baseline distortions. The spectral plot is a ratio of the "Channel 197 B" modulated signal intensities ($I_{s}-I_{p}$) divided by the "Channel A" unmodu- 198 lated signal $\left(I_{s}+I_{p}\right)$ generated by the GWC synchronous-sampling demod- 199 ulator (GWC Instruments, Madison, WI). Electrochemical experiments were 200
performed using a custom-built Kel-F thin-layer electrochemical cell patterned from the design of Seki, et al. [16] which allowed the insertion of a miniature leakless $\mathrm{Ag} / \mathrm{AgCl}(3.4 \mathrm{M} \mathrm{KCl})$ reference electrode and a flame-annealed Pt wire counter electrode close to a Cu disk working electrode.

3. Results and discussion

The high mobility of the surface atoms of copper, evidenced by its relatively low cohesive energy compared to other lighter face-centered cubic transition metals located to its left in the periodic table [17], underpins the susceptibility of the polycrystalline surface to reconstruct in alkaline solutions under sufficiently negative potentials. The discovery of the Cu $(\mathrm{pc}) \rightarrow \mathrm{Cu}(\mathrm{pc})-[\mathrm{Cu}(111)] \rightarrow \mathrm{Cu}(\mathrm{pc})-[\mathrm{Cu}(100)]$ surface transformation [13], a process that transpires independent of electrolyte effects [18], allows the facile correlation of catalytic activity and selectivity with welldefined surface structures without the deployment of expensive bulk single crystals. The formation of low-index planes at electrochemical environments proximate to those during electrocatalysis is favorable especially for an oxophilic metal like Cu that readily captures sub-monolayer coverages of oxygen even at potentials over half-a-volt more negative than the open-circuit value.

The electrochemically prepared $\mathrm{Cu}(h k l)$ surfaces do not retain their monocrystallinity once the electrode is removed from the influence of the applied potential in solution; i.e. the surface becomes oxided and reverts to an ill-defined polycrystalline state. The predicament severely raises a caveat against the validity of ex situ and in situ characterization of copper in the context of the electrochemical reduction of CO_{2}. These observations underscore the importance of a finite interfacial energy [19] required to preserve the reconstructed layer that rests atop the unperturbed polycrystalline pedestal. Efforts to ascertain the thickness of the rearra top layers using operando synchrotron-based XRD measurements ε e lin ited by the accessible grazing angle of incidence acute enough to probc x clusively the selvedge region. Thus far, the steepest angle affc •led by the attempted experiments convolutes a 10 -monolayer-deep structur. ${ }^{1}$ information composite of the surface and subsurface regions.

The $\mathrm{Cu}(\mathrm{pc})-[\mathrm{Cu}(100)]$ electrode can undergo further struc.u 1 l c anges by steady-state cyclic voltammetry in contradis' $n c$. $o n$ to the reconstruction-resistant behavior of the bulk $\mathrm{Cu}(100)$ rry ${ }^{\text {tal }}$ under similar conditions [20]. The structural evolution of $\mathrm{Cu}(\mathrm{F}$ is sunmarized in Fig. 1A-E. The potential vertices of the cycles wert $-し .^{7} 0 V$ and 0.10 V . The values were chosen to minimize, but not tc olly e, clude, effects from the hydrogen evolution reaction and the onse ${ }^{\sim} r_{u_{2}}$, sxide formation during the cathodic and anodic scans, respectiv ly. $\mathrm{T} _$eresultant surface consists of 3 -atom wide (100) terraces houn by a (111)-oriented monoatomic step as revealed by the STM ($\mathrm{Fr}_{1}, 2 \mathrm{~A}$). The surface bears the step notation $\mathrm{Cu}(S)-[3(100) \times(111)]$, wh. .i. is succinctly denoted as Cu (511). The dihedral angle between normal planes of the (511) surface and its (100) terrace is 15.79°. Hence, the (100) terraces protrude like angled slats from the surface so that, when viewed at large magnification,
the step edges of the terraces appear as a bright linear array and partly 249 eclipse the corner atoms (Fig. 2B). The $\mathrm{Cu}(\mathrm{pc})-[\mathrm{Cu}(511)]$ surface was ob- 250 served at a narrow potential window between -0.90 V to -1.10 V ; the 251 sharpness of the STM images acquired during a potentiostatic hold at 252 -1.10 V degraded quickly due to hydrogen evolution. At more negative 253 potentials, the image was indecipherable; as the potential was switched 254 back to -0.90 V , the same stepped structure can be recaptured. Wide- 255 spread structural regularity can be achieved after 20 potential cycles be- 256 tween -0.90 V and 0.10 V , although wide variations in the initial state 257 of polycrystalline Cu can prolong the time needed to achieve surface 258 order. Unlike polycrystalline noble metals like Pt, Pd, and Au whose ther- 259 mally annealed clean surfaces constitute reproducible initial states [21], 260 Cu relies on subjective mechanical and electrochemical polishing protocols 261 that inevitably shifts the timeframe to complete the multistep transition. 262

A few remarks are essential to understand the voltammetric scheme 263 used to generate $\mathrm{Cu}(\mathrm{pc})-[\mathrm{Cu}(511)]$. Classic electrochemical procedures 264 for the development of preferred crystallographic orientation on face- 265 centered cubic meta. -mploy rapid iterations, at a frequency of a few 266 kHz , of electrodissolution \urcorner nd electrodeposition [22]. The present prepara- 267 tive route intention sly c cludes the formation Cu (II) and its oxides and hy- 268 droxides, which e e r'ported to redeposit copper as islands and 269 nanostructure , as mblies [23]. Despite claims of enhanced activity of 270 CO_{2} reduct ${ }^{\circ}$) n_{1} ค n noparticles compared to foils, marginal differences 271 exist when 'e geometric-area-based current densities are recalculated in 272 terms c u. el strochemically active surface area. Furthermore, the use 273 of a w : ${ }^{1}$ e po sntial window for the oxidation-reduction cycles can intro- 274 duce tract. of copper oxides that can temporarily persist during CO_{2} reduc- 275 ti-n and alter the product profile non-catalytically; i.e. the oxides merely 276 be'ıa e as reactants that, once consumed, cannot be regenerated under 277 I. . $^{-1}-y$ reductive conditions due to prohibitive thermodynamics. 278

The product distribution of the electrochemical reduction of CO in 279 0.1 M KOH at $\mathrm{Cu}(\mathrm{pc})-[\mathrm{Cu}(511)]$ was assayed by differential electrochemi- 280 cal mass spectrometry (DEMS). The only product detected at -1.06 V 281 was ethanol (Fig. 3), a potential that is 150 mV more positive than the 282 onset of hydrocarbon production on Cu in basic medium. Neither the recon- 283 structed $\mathrm{Cu}(\mathrm{pc})-[\mathrm{Cu}(100)]$ surface nor the multiply cycled $\mathrm{Cu}(100)$ bulk 284 electrode yielded ethanol and other CO-reduction products at the narrow 285 potential window of interest [20]. The impact of this result rests on the 286 identification of a well-defined operando surface structure of Cu responsible 287 for the production of a singular alcohol. The product selectivity that favors 288 alcohols over hydrocarbons is realized at low overpotentials at the expense 289 of low current densities.

290
The DEMS ion-current signal for ethanol was superimposed with the 291 potential-dependent surface coverage of CO at $\mathrm{Cu}(\mathrm{pc})-[\mathrm{Cu}(511)]$ so that 292 both traces share the same abscissa. Details of the construction of the CO 293 surface coverage-vs-potential plots using electrochemical quartz crystal 294 nanobalance (EQCN) were reported earlier [10]. Fig. 4 shows a drastic 295 rise in the fractional surface coverage, θ_{CO}, from zero to 0.5 as the potential 296 was stepped from $-0.80 V$ to -0.85 V . UHV studies on the 297 low-temperature adsorption of CO on $\mathrm{Cu}(100)$ surface indicated that, at 298

Fig. 1. A. Polycrystalline copper, $\mathrm{Cu}(\mathrm{pc})$, disk electrode. B. STM image of $\mathrm{Cu}(\mathrm{pc})$ surface at the start of polarization at $\mathrm{E}(\mathrm{SHE})=-0.90 \mathrm{~V}$ in 0.1 M KOH . C . $\mathrm{Cu}(\mathrm{pc})$ initially generates a (111)-oriented surface. D. Further surface reconstruction yields $\mathrm{Cu}(\mathrm{pc})-[\mathrm{Cu}(100)]$. E. Subsequent potential cycling of D between -0.90 V and 0.10 V in 0.1 M KOH gives rise to a stepped surface. Bias potential, $E_{\text {bias }}=250 \mathrm{mV}$. Tunneling current, $I_{t}=2 \mathrm{nA}$ for wide-scale images; 5 nA for high-resolution images.

Fig. 2. A. High-resolution STM image of a $\mathrm{Cu}(511)$ surface shows (100) terrace planes, indicated by tl e squa e unit mesh, and monoatomic (111) steps delineated by a triangle. B. The step, terrace, and corner sites of an ideal $\mathrm{Cu}(S)-[3(100) x(111)]$ surface. A quarter of a sın $n^{*} \mathrm{~m}^{2}$ is located at each corner of the rectangular unit surface mesh, in green, of $\mathrm{Cu}(511)$. (For interpretation of the references to colour in this figure legend, the $\mathrm{r} \mathrm{t}^{\text {t }}$ er is referred to the web version of this article.)
high-vacuum pressures, the surface already reaches saturation coverage at $\theta_{\mathrm{CO}}=0.5$, which corresponds to a $c(2 \times 2)$ adlattice [24]. The CO-to-
based on . `e potential-dependence of the former and the invariance of 319 t^{2} latter.

Fig. 3. Product analysis of the electrochemical i, 'uction of CO at $\mathrm{Cu}(\mathrm{pc})-[\mathrm{Cu}(511)]$ reveals ethanol as the only carbonaceous product. The DEMS signals for methane and ethylene were essentially zero at $\mathrm{E}(\mathrm{SHE})=-1.06 \mathrm{~V}$ in 0.1 M KOH .
ethanol conversion did not ensue until -1.06 V was reached; at this potential the surface was saturated with adsorbed CO. The concentration of CO dissolved in the electrolytic solution, previously bubbled with gaseous CO, was found sufficient to replenish any reacted CO within four hours of polarization in the low overpotential region.

The vibrational characteristics of the surface-confined CO molecules on $\mathrm{Cu}(\mathrm{pc})-[\mathrm{Cu}(511)]$ were examined by polarization-modulation infrared spectroscopy. The high-frequency modulation between the s - and p-states of the infrared beam affords surface sensitivity to the technique: Only p-polarized beam can interact with adsorbates that have a net dipole moment perpendicular to the surface [25]. A plot of the ratio between the modulated and demodulated intensities as a function of wavenumber minimizes isotropic spectral contributions from solution species. Bands for the stretching, bending, and librating modes of water, for instance, are not completely removed because the distance between the electrode and CaF_{2} window in the thin-layer cell configuration is of the same order of magnitude as the wavelength of the IR beam. PMIRS peaks from surface-bound and solution-based species can be discriminated

Fig. 5 shows the PMIRS spectra of CO adsorbed on $\mathrm{Cu}(\mathrm{pc})-[\mathrm{Cu}(511)]$ in 321 CO-saturated 0.1 M KOH . The presence of (100) terraces on the stepped sur- 322 face warrants a comparison of the $\mathrm{CO}_{\mathrm{ads}}-\mathrm{Cu}(100)$ spectral signature 323 discussed elsewhere [12]. The IR peak for CO on $\mathrm{Cu}(\mathrm{pc})-[\mathrm{Cu}(511)] 324$ appeared in the same region as that for CO on $\mathrm{Cu}(100)$. The spectral resem- 325 blance at $2020 \mathrm{~cm}^{-1}-2030 \mathrm{~cm}^{-1}$ suggests the involvement of terrace- 326 bound carbon atoms during the formation of ethanol. Such multi-atomic 327 process is, hence, not exclusively confined at coordinatively unsaturated 328 sites. A thorough analysis of the energy landscape that surrounds the geo- 329 metric requirements for C_{2} production on step-terrace ensembles is beyond 330 the scope of the report.

Under electrochemical conditions, the surface-coordination site and vi- 332 brational characteristics of CO chemisorbed on $\mathrm{Cu}(\mathrm{pc})-[\mathrm{Cu}(511)]$ are evi- 333 dently different from those observed in vacuo for a family of stepped 334 surfaces. Ultrahigh vacuum studies of the cryogenic chemisorption CO at 335 the vicinal surfaces of $\mathrm{Cu}(211)$, (311), and (755) identify a singular IR 336 band at $2090 \mathrm{~cm}^{-1}-2110 \mathrm{~cm}^{-1}$ ascribed to CO adsorbates on step sites 337 [26]. Although the specific region appears active in the present 338

Fig. 4. Potential-dependent behavior of the ion current for the base peak of ethanol $(m / z=31)$ in blue and the fractional surface coverage, Θ, of CO at $\mathrm{Cu}(\mathrm{pc})-[\mathrm{Cu}$ (511)] in black. The lines that interconnect the data points serve only as visual guide. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
electrochemical PMIR spectra, the signal-to-noise does not permit an unambiguous step-specific peak assignment. The irresistible assertion that the barely discernible CO-on-step feature in PMIRS indicates a lower COadsorbate population on steps compared to that on terraces has to be avoided in view of the well-documented intensity borrowing phenomena of neighboring CO peaks on Cu surfaces; i.e. the absorption intensities do not necessarily scale linearly with the surface coverage of the IR-active
absorber [27]. Essential to the elucidation of the potential-dependent spec- 346 troscopic features of CO during its electrochemical reduction at Cu surfaces 347 is hinged on the full characterization of the nature of the bond between Cu 348 and CO. A definitive description of the orbital picture during the $\mathrm{Cu}-\mathrm{CO}$ for- 349 mation specifically at the electrode-electrolyte interface has yet to be for- 350 mulated. The metal-carbon bond is generally treated in terms of the 351 classic Blyholder model [28] although the apparently restrictive closed $d-352$ shell configuration $\left(s^{1} d^{10}\right)$ of Cu would have initially precluded the CO-to- 353 metal electron donation prior to the metal-to-CO backdonation. Analysis 354 of the X-ray emission spectra of the carbon and oxygen K-edges for CO 355 adsorbed on $\mathrm{Cu}(100)$ has led to refinements of the Blyholder model that 356 now considers $4 \sigma-5 \sigma$ orbital mixing and the hybridization of the whole $\pi-357$ electronic structure of CO instead of a purely frontier-orbital interaction 358 [29]. The applicability of the updated Blyholder model to the surface bond- 359 ing of CO on Cu remains untested under electrochemical conditions since 360 present experimental evidences are acquired in ultrahigh vacuum.

361

4. Conclusion

362

A series of step rise otential-dependent reconstruction transformed 363 the surface of , $\mathrm{po}_{.}$. crystalline Cu electrode exposed to alkaline solution 364 into a well-rei ned $(\mathrm{u}(S)-[3(100) \mathrm{x}(111)]$ or (511) surface. Ethanol was 365 the exclus. a alcohol product at the stepped Cu surfaces at a low 366 overpo $\left.^{+}-11 \cdot\right\urcorner 1$ し? -1.06 V (SHE); no hydrocarbons such as ethylene or 367 metha. د wer co-generated. The chemisorption of CO on Cu is a prerequi- 368 site for the ransformation of CO into alcohols. Contrary to the expectation 369 ${ }^{\text {th }}$ + undercoordinated (step) sites predominantly steer the overall reactiv- 370 itv of vicinal surfaces, vibrational spectroscopic evidence reveals the in- 371 W...-ment of terrace-bound CO adsorbates in the production of ethanol. 372

Fig. 5. The CO stretch frequency region in the polarization-modulation infrared spectra of left panel: the electrochemically generated $\mathrm{Cu}(\mathrm{pc})-[\mathrm{Cu}(511)] ;$ rightpanel: $\mathrm{Cu}(100)$ in CO-saturated 0.1 M KOH during potentiostatic experiments.
J.H. Bar

Authors contributions

J.H.B., Y.-G.K., C.F.T., A.C.J., K.D.C. and J.C.H. designed research J.H.B., Y.-G.K., C.F.T., A.C.J., performed research
J.H.B., Y.-G.K., C.F.T., A.C.J., K.D.C. and J.C.H. analyzed data
J.H.B. wrote the paper

Declaration of interest

None.

Acknowledgment

This material is based upon work performed by the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy under Award No. DE-SC0004993.

References

[1] E.P. Benson, C.P. Kubiak, A.J. Sathrum, J.M. Smieja, Electrocatalytic and homogeneous approaches to conversion of CO_{2} to liquid fuels, Chem. Soc. Rev. 38 (2009) 89-99.
[2] R. Francke, B. Schille, M. Roemelt, Homogeneously catalyzed electroreduction of carbon dioxide - methods, mechanisms, and catalysts, Chem. Rev. 118 (2018) 4631-4701.
[3] Y. Hori (Ed.), Handbook of Fuel Cells: Fundamentals, Technology and Application, 2, VHS-Wiley, Chichester 2003, pp. 720-733.
[4] K.P. Kuhl, T. Hatsukade, E.R. Cave, D.N. Abram, J. Kibsgaard, T.F. Jaramillo, Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces, J. Am. Chem. Soc. 136 (2014) 14107-14113.
[5] K.P. Kuhl, E.R. Cave, D.N. Abram, T.F. Jaramillo, New insights into the electrochemical reduction of carbon dioxide on metallic copper surface, Energy Environ. Sci. 5 (2012) 7050-7059.
[6] Y. Hori, "Electrochemical CO_{2} reduction on metal electrodes", Modern Aspects ' Ele trochemistry, No. 42, C.G. Vayenas, R.E. White, M.E. Gamboa-Aldeco, Sprin, r: Ne York p. 89-189.
[7] Y. Hori, I. Takahashi, O. Koga, N. Hoshi, Selective formation of C2 compounds fro. electrochemical reduction of CO_{2} at a series of copper single crystal i \imath ctrodes, J. Phys. Chem. B 106 (2002) 15-17.
[8] K.J.P. Schouten, E.P. Gallent, M.T.M. Koper, Structure sensitivity of the ter ocht.aical reduction of carbon monoxide on copper single crystals, ACS atг . . . 2013) 1292-1295.
[9] Y.-G. Kim, A. Javier, J.H. Baricuatro, M.P. Soriaga, Regulating th : pro 'ct distribution of CO reduction by the atomic-level structural modification of th. .u elecurode surface, Electrocatalysis 7 (2016) 391-399.
[10] C.F. Tsang, A.C. Javier, Y.-G. Kim, J.H. Baricuatro, K.D. Cummı J. Kim, G. Jerkiewicz, J.C. Hemminger, M.P. Soriaga, Potential-dependent adsı ntioı of CO and its low-
overpotential reduction to $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ on $\mathrm{Cu}(511)$ surface reconstructed from $\mathrm{Cu}(\mathrm{pc})$: 413 operando studies by seriatim STM-EQCN-DEMS, J. Electrochem. Soc. 165 (2018) 414 J3350-J3354
[11] A. Javier, B. Chmielowiec, J. Sanabria-Chinchilla, Y.-G. Kim, J.H. Baricuatro, M.P. 416 Soriaga, A DEMS study of the reduction of $\mathrm{CO}_{2}, \mathrm{CO}$, and HCHO pre-adsorbed on Cu 417 electrodes: empirical inferences on the $\mathrm{CO}_{2} \mathrm{RR}$ mechanism, Electrocatalysis 6 (2015) 418 127-131.
[12] J.H. Baricuatro, Y.-G. Kim, C.L. Korzeniewski, M.P. Soriaga, Seriatim ECSTM-ECPMIRS 420 of the adsorption of carbon monoxide on $\mathrm{Cu}(100)$ in alkaline solution at CO_{2}-reduction 421 potentials, Electrochem. Commun. 91 (2018) 1-4.
[13] Y.-G. Kim, J.H. Baricuatro, A. Javier, J.M. Gregoire, M.P. Soriaga, The evolution of the 423 polycrystalline copper surface, first to $\mathrm{Cu}(111)$ and then to $\mathrm{Cu}(100)$, at a fixed $\mathrm{CO}_{2} \mathrm{RR} 424$ potential: a study by operando EC-STM, Langmuir 30 (2014) 15053-15056.
[14] G. Jerkiewicz, G. Vatankhah, A. Zolfaghari, J. Lessard, Analysis of the mass response of 426 the electrochemical quart-crystal nanobalance in horizontal and vertical geometry, 427 Electrochem. Commun. 1 (1999) 419-424.
[15] J.H. Gross, Mass Spectrometry, Springer, New York, 2004241.
[16] H. Seki, K. Kunimatsu, W. Golden, Appl. Spectrosc. 39 (1985) 437-443. 430
[17] H.P. Myers, Introductory Solid State Physics, 2nd ed Taylor \& Francis, Philadelphia, 431 199715.
[18] Y.-G. Kim, J.H. Baricuatro, M.P. Soriaga, Surface reconstruction of polycrystalline Cu 433 electrodes in aqueous KHCO_{3} electrolyte at potentials in the early stages of CO_{2} reduc- 434 tion, Electrocatalysis 3 (2018) 526-530.
[19] D.H. Buckley, Surface ffects in Adhesion, Friction, Wear, and Lubrication, Elsevier, 436 Amsterdam, 1981270. Hemmingers, M.l Soriag , Surface reconstruction of pure-Cu single-crystal electrodes 439 under CO-redיntic. n antials in alkaline solutions: a study by seriatim ECSTM- 440 DEMS, J. E ${ }^{1}$ ctroas. l. Chem. 780 (2016) 290-295.
[21] K. Itaya, 'n . 'u scas ling tunneling microscopy in electrolyte solutions, Prog. Surf. Sci. 442 58 (19С4, 121-....
2] E.V. Alba. H.O. Martin, A.J. Arvia, A mechanistic model for the electrochemical 44 far any f retals with development of preferred crystallographic orientations, 445 E trochi . Acta 33 (1988) 271-277.
[23] S.Y. L -1. Jung, N.-K. Kim, H.-S. Oh, B.K. Min, Y.J. Hwang, Mixed copper states in an- 447 c. szed C. lectrocatalyst for stable and selective ethylene production from CO_{2} reduc- 448 tion, J. Am. Chem. Soc. 140 (2018) 8681-8689.
[2 2^{\prime}, I A. Chesters, J. Pritchard, LEED and surface potential study of carbon monoxide and 450 non adsorbed on $\mathrm{Cu}(100)$, Surf. Sci. 28 (1971) 460-468.
[25] R.G. Greenler, Infrared study of adsorbed molecules on metal surfaces by reflection 452 techniques, J. Chem. Phys. 44 (1966) 310-315. ction- 454 absorption spectra of chemisorbed carbon monoxide on copper, in: A.T. Bell, M.L. 455 Hair (Eds.), Vibrational Spectroscopies for Adsorbed Species ACS Symposium Series, 456 American Chemical Society, Washington, DC 1980, pp. 51-73.
[27] E. Borguet, H.-L. Dai, Site-specific properties and dynamical dipole coupling of CO mol- 458 ecules adsorbed on vicinal $\mathrm{Cu}(100)$ surface, J. Chem. Phys. 101 (1994) 9080.
[28] G. Blyholder, Molecular orbital view of chemisorbed carbon monoxide, J. Phys. Chem. 460 68 (1964) 2772.
[29] A. Nilsson, L.G.M. Pettersson, J.K. Norskov, Chemical Bonding at Surfaces and Inter- 462 faces, Elsevier, Amsterdam, 2008.

[^0]: please use the original publication details; Volume 857, 15 January 2020, 113704, DOI of original item: 10.1016/j.jelechem.2019.113704.
 DOI of original article: http://dx.doi.org/10.1016/j.jelechem.2019.113704.

 * Corresponding authors.

 E-mail addresses: jackhess@caltech.edu, (J.H. Baricuatro), ygkim@caltech.edu. (Y.-G. Kim).

