5,296 research outputs found

    Spectral Evolution of Anomalous Cosmic Rays at Voyager 1 beyond the Termination Shock

    Get PDF
    When the Voyager 1 spacecraft crossed the termination shock (TS) on 2004 December 16, the energy spectra of anomalous cosmic rays (ACRs) could not have been produced by steady-state diffusive shock acceleration. However, over the next few years, in the declining phase of the solar cycle, the spectra began to evolve into the expected power-law profile. Observations at the shock led to a broad range of alternative theories for ACR acceleration. In spite of that, in this work we show that the observations could be explained by assuming ACRs are accelerated at the TS. In this paper, we propose that the solar cycle had an important effect on the unrolling of the spectra in the heliosheath. To investigate the spectral evolution of ACRs, a magnetohydrodynamic background model with stationary solar-wind inner boundary conditions was used to model the transport of helium and oxygen ions. We used a backward-in-time stochastic integration technique where phase-space trajectories are integrated until the so-called "injection energy" is reached. Our simulation results were compared with Voyager 1 observations using three different diffusion models. It is shown that the spectral evolution of ACRs in the heliosheath at Voyager 1 could be explained by an increase in the source strength and an enhancement in diffusion as a result of a decrease of the turbulent correlation length in the declining phase of the solar cycle. At the same time, drift effects seem to have had a smaller effect on the evolution of the spectra

    The early X-ray afterglows of optically bright and dark Gamma-Ray Bursts

    Full text link
    A systematical study on the early X-ray afterglows of both optically bright and dark gamma-ray bursts (B-GRBs and D-GRBs) observed by Swift has been presented. Our sample includes 25 GRBs. Among them 13 are B-GRBs and 12 are D-GRBs. Our results show that the distributions of the X-ray afterglow fluxes (FXF_{X}), the gamma-ray fluxes (SγS_{\gamma}), and the ratio (Rγ,XR_{\gamma, X}) for both the D-GRBs and B-GRBs are similar. The differences of these distributions for the two kinds of GRBs should be statistical fluctuation. These results indicate that the progenitors of the two kinds of GRBs are the same population. Their total energy explosions are comparable. The suppression of the optical emissions from D-GRBs should results from circumburst but not their central engine.Comment: 10 pages, 3 figures, 1 table; accepted by ChJA

    Increased gastrin-releasing peptide (GRP) receptor expression in tumour cells confers sensitivity to [Arg6,D-Trp7,9,NmePhe8]-substance P (6-11)-induced growth inhibition.

    Get PDF
    [Arg(6),D-Trp(7,9),N(me)Phe(8)]-substance P (6-11) (SP-G) is a novel anticancer agent that has recently completed phase I clinical trials. SP-G inhibits mitogenic neuropeptide signal transduction and small cell lung cancer (SCLC) cell growth in vitro and in vivo. Using the SCLC cell line series GLC14, 16 and 19, derived from a single patient during the clinical course of their disease and the development of chemoresistance, it is shown that there was an increase in responsiveness to neuropeptides. This was paralleled by an increased sensitivity to SP-G. In a selected panel of tumour cell lines (SCLC, non-SCLC, ovarian, colorectal and pancreatic), the expression of the mitogenic neuropeptide receptors for vasopressin, gastrin-releasing peptide (GRP), bradykinin and gastrin was examined, and their sensitivity to SP-G tested in vitro and in vivo. The tumour cell lines displayed a range of sensitivity to SP-G (IC(50) values from 10.5 to 119 microM). The expression of the GRP receptor measured by reverse transcriptase-polymerase chain reaction, correlated significantly with growth inhibition by SP-G. Moreover, introduction of the GRP receptor into rat-1A fibroblasts markedly increased their sensitivity to SP-G. The measurement of receptor expression from biopsy samples by polymerase chain reaction could provide a suitable diagnostic test to predict efficacy to SP-G clinically. This strategy would be of potential benefit in neuropeptide receptor-expressing tumours in addition to SCLC, and in tumours that are relatively resistant to conventional chemotherapy

    A preclinical microbeam facility with a conventional x-ray tube.

    Get PDF
    Purpose Microbeam radiation therapy is an innovative treatment approach in radiation therapy that uses arrays of a few tens of micrometer wide and a few hundreds of micrometer spaced planar x-ray beams as treatment fields. In preclinical studies these fields efficiently eradicated tumors while normal tissue could effectively be spared. However, development and clinical application of microbeam radiation therapy is impeded by a lack of suitable small scale sources. Until now, only large synchrotrons provide appropriate beam properties for the production of microbeams.Methods In this work, a conventional x-ray tube with a small focal spot and a specially designed collimator are used to produce microbeams for preclinical research. The applicability of the developed source is demonstrated in a pilot in vitro experiment. The properties of the produced radiation field are characterized by radiochromic film dosimetry.Results 50 μm wide and 400 μm spaced microbeams were produced in a 20 × 20 mm2 sized microbeam field. The peak to valley dose ratio ranged from 15.5 to 30, which is comparable to values obtained at synchrotrons. A dose rate of up to 300 mGy/s was achieved in the microbeam peaks. Analysis of DNA double strand repair and cell cycle distribution after in vitro exposures of pancreatic cancer cells (Panc1) at the x-ray tube and the European Synchrotron leads to similar results. In particular, a reduced G2 cell cycle arrest is observed in cells in the microbeam peak region.Conclusions At its current stage, the source is restricted to in vitro applications. However, moderate modifications of the setup may soon allow in vivo research in mice and rats

    Observations of the longitudinal spread of solar energetic particle events in solar cycle 24

    Get PDF
    With the twin STEREO spacecraft, significantly separated from L1-based satellites such as ACE, simultaneous multi-point measurements of solar energetic particle (SEP) events can be made for H-Fe ions from a few hundred keV/nuc to over 100 MeV/nuc and for electrons from tens to hundreds of keV. These observations allow studies of the longitudinal characteristics of SEP events to advance beyond statistical analysis of single point measurements. Although there have been few large SEP events thus far in cycle 24, there have been a number of smaller events that have been detected by more than one spacecraft. The composition of these SEP events, as indicated by the H/He and Fe/O abundance ratios, shows a dependence on longitudinal distance from the solar source in some events, at times with ratios varying by an order of magnitude. However, these variations are not organized by either the speed or width of the associated coronal mass ejections

    A moving boundary model motivated by electric breakdown: II. Initial value problem

    Get PDF
    An interfacial approximation of the streamer stage in the evolution of sparks and lightning can be formulated as a Laplacian growth model regularized by a 'kinetic undercooling' boundary condition. Using this model we study both the linearized and the full nonlinear evolution of small perturbations of a uniformly translating circle. Within the linear approximation analytical and numerical results show that perturbations are advected to the back of the circle, where they decay. An initially analytic interface stays analytic for all finite times, but singularities from outside the physical region approach the interface for tt\to\infty, which results in some anomalous relaxation at the back of the circle. For the nonlinear evolution numerical results indicate that the circle is the asymptotic attractor for small perturbations, but larger perturbations may lead to branching. We also present results for more general initial shapes, which demonstrate that regularization by kinetic undercooling cannot guarantee smooth interfaces globally in time.Comment: 44 pages, 18 figures, paper submitted to Physica

    Galactic Abundances: Report of Working Group 3

    Get PDF
    We summarize the various methods and their limitations and strengths to derive galactic abundances from in-situ and remote-sensing measurements, both from ground-based observations and from instruments in space. Because galactic abundances evolve in time and space it is important to obtain information with a variety of different methods covering different regions from the Very Local Insterstellar Medium (VLISM) to the distant galaxy, and different times throughout the evolution of the galaxy. We discuss the study of the present-day VLISM with neutral gas, pickup ions, and Anomalous Cosmic Rays, the study of the local interstellar medium (ISM) at distances <1.5 kpc utilizing absorption line measurements in H I clouds, and the study of galactic cosmic rays, sampling contemporary (~15 Myr) sources in the local ISM within a few kiloparsec of the solar system. Solar system abundances, derived from solar abundances and meteorite studies are discussed in several other chapters of this volume. They provide samples of matter from the ISM from the time of solar system format ion, about 4.5 Gyr ago. The evolution of galactic abundances on longer time scales is discussed in the context of nuclear synthesis in the various contributing stellar objects

    A moving boundary problem motivated by electric breakdown: I. Spectrum of linear perturbations

    Get PDF
    An interfacial approximation of the streamer stage in the evolution of sparks and lightning can be written as a Laplacian growth model regularized by a `kinetic undercooling' boundary condition. We study the linear stability of uniformly translating circles that solve the problem in two dimensions. In a space of smooth perturbations of the circular shape, the stability operator is found to have a pure point spectrum. Except for the zero eigenvalue for infinitesimal translations, all eigenvalues are shown to have negative real part. Therefore perturbations decay exponentially in time. We calculate the spectrum through a combination of asymptotic and series evaluation. In the limit of vanishing regularization parameter, all eigenvalues are found to approach zero in a singular fashion, and this asymptotic behavior is worked out in detail. A consideration of the eigenfunctions indicates that a strong intermediate growth may occur for generic initial perturbations. Both the linear and the nonlinear initial value problem are considered in a second paper.Comment: 37 pages, 6 figures, revised for Physica

    Distinct molecular and cellular contributions to stabilizing selectin-mediated rolling under flow

    Get PDF
    Leukocytes roll on selectins at nearly constant velocities over a wide range of wall shear stresses. Ligand-coupled microspheres roll faster on selectins and detach quickly as wall shear stress is increased. To examine whether the superior performance of leukocytes reflects molecular features of native ligands or cellular properties that favor selectin-mediated rolling, we coupled structurally defined selectin ligands to microspheres or K562 cells and compared their rolling on P-selectin. Microspheres bearing soluble P-selectin glycoprotein ligand (sPSGL)-1 or 2-glycosulfopeptide (GSP)-6, a GSP modeled after the NH2-terminal P-selectin–binding region of PSGL-1, rolled equivalently but unstably on P-selectin. K562 cells displaying randomly coupled 2-GSP-6 also rolled unstably. In contrast, K562 cells bearing randomly coupled sPSGL-1 or 2-GSP-6 targeted to a membrane-distal region of the presumed glycocalyx rolled more like leukocytes: rolling steps were more uniform and shear resistant, and rolling velocities tended to plateau as wall shear stress was increased. K562 cells treated with paraformaldehyde or methyl-β-cyclodextrin before ligand coupling were less deformable and rolled unstably like microspheres. Cells treated with cytochalasin D were more deformable, further resisted detachment, and rolled slowly despite increases in wall shear stress. Thus, stable, shear-resistant rolling requires cellular properties that optimize selectin–ligand interactions
    corecore