13,481 research outputs found

    Concepts and procedures used to determine certain sea wave characteristics

    Get PDF
    A technique and its application are presented by which wave parameters, critical to spacecraft water impact load analysis, may be determined

    Dynamics of Atom-Field Entanglement from Exact Solutions: Towards Strong Coupling and Non-Markovian Regimes

    Full text link
    We examine the dynamics of bipartite entanglement between a two-level atom and the electromagnetic field. We treat the Jaynes-Cummings model with a single field mode and examine in detail the exact time evolution of entanglement, including cases where the atomic state is initially mixed and the atomic transition is detuned from resonance. We then explore the effects of other nearby modes by calculating the exact time evolution of entanglement in more complex systems with two, three, and five field modes. For these cases we can obtain exact solutions which include the strong coupling regimes. Finally, we consider the entanglement of a two-level atom with the infinite collection of modes present in the intracavity field of a Fabre-Perot cavity. In contrast to the usual treatment of atom-field interactions with a continuum of modes using the Born-Markov approximation, our treatment in all cases describes the full non-Markovian dynamics of the atomic subsystem. Only when an analytic expression for the infinite mode case is desired do we need to make a weak coupling assumption which at long times approximates Markovian dynamics.Comment: 12 pages, 5 figures; minor changes in grammar, wording, and formatting. One unnecessary figure removed. Figure number revised (no longer counts subfigures separately

    Selecting Metrics to Evaluate Human Supervisory Control Applications

    Get PDF
    The goal of this research is to develop a methodology to select supervisory control metrics. This methodology is based on cost-benefit analyses and generic metric classes. In the context of this research, a metric class is defined as the set of metrics that quantify a certain aspect or component of a system. Generic metric classes are developed because metrics are mission-specific, but metric classes are generalizable across different missions. Cost-benefit analyses are utilized because each metric set has advantages, limitations, and costs, thus the added value of different sets for a given context can be calculated to select the set that maximizes value and minimizes costs. This report summarizes the findings of the first part of this research effort that has focused on developing a supervisory control metric taxonomy that defines generic metric classes and categorizes existing metrics. Future research will focus on applying cost benefit analysis methodologies to metric selection. Five main metric classes have been identified that apply to supervisory control teams composed of humans and autonomous platforms: mission effectiveness, autonomous platform behavior efficiency, human behavior efficiency, human behavior precursors, and collaborative metrics. Mission effectiveness measures how well the mission goals are achieved. Autonomous platform and human behavior efficiency measure the actions and decisions made by the humans and the automation that compose the team. Human behavior precursors measure human initial state, including certain attitudes and cognitive constructs that can be the cause of and drive a given behavior. Collaborative metrics address three different aspects of collaboration: collaboration between the human and the autonomous platform he is controlling, collaboration among humans that compose the team, and autonomous collaboration among platforms. These five metric classes have been populated with metrics and measuring techniques from the existing literature. Which specific metrics should be used to evaluate a system will depend on many factors, but as a rule-of-thumb, we propose that at a minimum, one metric from each class should be used to provide a multi-dimensional assessment of the human-automation team. To determine what the impact on our research has been by not following such a principled approach, we evaluated recent large-scale supervisory control experiments conducted in the MIT Humans and Automation Laboratory. The results show that prior to adapting this metric classification approach, we were fairly consistent in measuring mission effectiveness and human behavior through such metrics as reaction times and decision accuracies. However, despite our supervisory control focus, we were remiss in gathering attention allocation metrics and collaboration metrics, and we often gathered too many correlated metrics that were redundant and wasteful. This meta-analysis of our experimental shortcomings reflect those in the general research population in that we tended to gravitate to popular metrics that are relatively easy to gather, without a clear understanding of exactly what aspect of the systems we were measuring and how the various metrics informed an overall research question

    Assessing the Impact of Haptic Peripheral Displays for UAV Operators

    Get PDF
    Objectives: A pilot study was conducted to investigate the effectiveness of continuous haptic peripheral displays in supporting multiple UAV supervisory control. Background: Previous research shows that continuous auditory peripheral displays can enhance operator performance in monitoring events that are continuous in nature, such as monitoring how well UAVs stay on their pre-planned courses. This research also shows that auditory alerts can be masked by other auditory information. Command and control operations are generally performed in noisy environments with multiple auditory alerts presented to the operators. In order to avoid this masking problem, another potentially useful sensory channel for providing redundant information to UAV operators is the haptic channel. Method: A pilot experiment was conducted with 13 participants, using a simulated multiple UAV supervisory control task. All participants completed two haptic feedback conditions (continuous and threshold), where they received alerts based on UAV course deviations and late arrivals to targets. Results: Threshold haptic feedback was found to be more effective for late target arrivals, whereas continuous haptic feedback resulted in faster reactions to course deviations. Conclusions: Continuous haptic feedback appears to be more appropriate for monitoring events that are continuous in nature (i.e., how well a UAV keeps its course). In contrast, threshold haptic feedback appears to better support response to discrete events (i.e., late target arrivals). Future research: Because this is a pilot study, more research is needed to validate these preliminary findings. A direct comparison between auditory and haptic feedback is also needed to provide better insights into the potential benefits of multi-modal peripheral displays in command and control of multiple UAVs.Prepared for Charles River Analytics, Inc

    Supporting Intelligent and Trustworthy Maritime Path Planning Decisions

    Get PDF
    The risk of maritime collisions and groundings has dramatically increased in the past five years despite technological advancements such as GPS-based navigation tools and electronic charts which may add to, instead of reduce, workload. We propose that an automated path planning tool for littoral navigation can reduce workload and improve overall system efficiency, particularly under time pressure. To this end, a Maritime Automated Path Planner (MAPP) was developed, incorporating information requirements developed from a cognitive task analysis, with special emphasis on designing for trust. Human-in-the-loop experimental results showed that MAPP was successful in reducing the time required to generate an optimized path, as well as reducing path lengths. The results also showed that while users gave the tool high acceptance ratings, they rated the MAPP as average for trust, which we propose is the appropriate level of trust for such a system.This work was sponsored by Rite Solutions Inc., Assett Inc., Mikel Inc., and the Office of Naval Research. We would also like to thank Northeast Maritime Institute, the MIT NROTC detachment, the crew of the USS New Hampshire, and the anonymous reviewers whose comments significantly improved the paper

    Determination of Drag From Three-Dimensional Viscous and Inviscid Flowfield Computations

    Get PDF
    A momentum balance approach is used to extract the drag from flowfield computations for wings and wing/bodies in subsonic/transonic flight. The drag is decomposed into vorticity, entropy, and enthalpy components which can be related to the established engineering concepts of induced drag, wave and profile drag, and engine power and efficiency. This decomposition of the drag is useful in formulating techniques for accurately evaluating drag using computational fluid dynamics calculations or experimental data. A formulation for reducing the size of the region of the crossflow plane required for calculating the drag is developed using cut-off parameters for viscosity and entropy. This improves the accuracy of the calculations and decreases the computation time required to obtain the drag results. The improved method is applied to a variety of wings, including the M6, W4, and Ml65 wings, Lockheed Wing A, a NACA 0016 wing, and an Elliptic wing. The accuracy of the resulting drag calculations is related to various computational aspects, including grid type (structured or unstructured), grid density, flow regime (subsonic or transonic), boundary conditions, and the level of the governing equations (Euler or Navier-Stokes). The results show that drag prediction to within engineering accuracy is possible using computational fluid dynamics, and that numerical drag optimization of complex aircraft configurations is possibl

    Transmission loss predictions for dissipative silencers of arbitrary cross section in the presence of mean flow

    Get PDF
    A numerical technique is developed for the analysis of dissipative silencers of arbitrary, but axially uniform, cross section. Mean gas flow is included in a central airway which is separated from a bulk reacting porous material by a concentric perforate screen. The analysis begins by employing the finite element method to extract the eigenvalues and associated eigenvectors for a silencer of infinite length. Point collocation is then used to match the expanded acoustic pressure and velocity fields in the silencer chamber to those in the inlet and outlet pipes. Transmission loss predictions are compared with experimental measurements taken for two automotive dissipative silencers with elliptical cross sections. Good agreement between prediction and experiment is observed both without mean flow and for a mean flow Mach number of 0.15. It is demonstrated also that the technique presented offers a considerable reduction in computational expenditure when compared to a three dimensional finite element analysis

    Mitigation of Human Supervisory Control Wait Times through Automation Strategies

    Get PDF
    The application of network centric operations principles to human supervisory control (HSC) domains means that humans are increasingly being asked to manage multiple simultaneous HSC processes. However, increases in the number of available information sources, volume of information and operational tempo, all which place higher cognitive demands on operators, could become constraints limiting the success of network centric processes. In time-pressured scenarios typical of networked command and control scenarios, efficiently allocating attention between a set of dynamic tasks is crucial for mission success. Inefficient attention allocation leads to system wait times, which could eventually lead to critical events such as missed times on targets and degraded overall mission success. One potential solution to mitigating wait times is the introduction of automated decision support in order to relieve operator workload. However, it is not obvious what automated decision support is appropriate, as higher levels of automation may result in a situation awareness decrement and other problems typically associated with excessive automation such as automation bias. To assess the impact of increasing levels of automation on human and system performance in a time-critical HSC multiple task management context, an experiment was run in which an operator simultaneously managed four highly autonomous unmanned aerial vehicles (UAVs) executing an air tasking order, with the overall goal of destroying a pre-determined set of targets within a limited time period. Four increasing levels automated decision support were investigated as well as high and low operational replanning tempos. The highest level of automation, management-byexception, had the best performance across several metrics but had a greater number of catastrophic events during which a UAV erroneously destroyed a friendly target. Contrary to expectations, the collaborative level of decision support, which provided predictions for possible periods of task overload as well as possible courses of action to relieve the high workload, produced the worst performance. This is attributable to an unintended consequence of the automation where the graphical visualization of the computer’s predictions caused users to try to globally optimize the schedules for all UAVs instead of locally optimizing schedules in the immediate future, resulting in them being overwhelmed. Total system wait time across both experimental factors was dominated by wait time caused by lack of situation awareness, which is difficult to eliminate, implying that there will be a clear upper limit on the number of vehicles that any one person can supervise because of the need to stay cognitively aware of unfolding events.Prepared for Boeing, Phantom Work

    Design Methodology for Unmanned Aerial Vehicle (UAV) Team Coordination

    Get PDF
    Unmanned Aerial Vehicle (UAV) systems, despite having no onboard human pilots, currently require extensive human involvement to accomplish successful mission operations. Further, successful operations also require extensive colalboration between mission stakeholders, including operators, mission commanders, and information consumers (e.g. ground troops relying on intelligence reports in their area). Existing UAV system interfaces provide little to no support for collaboration between remote operators or for operators to collaborate with information consumers. As reliance on UAVs continues to increase in military and civilian operations, this lack of support for collaboration will likely become a substantial limitation of existing UAV systems. In order to introduce effective collaboration support to UAV system interfaces, it is essential to understand, and be able to derive system design requirements that address, the necessary group interactions that occur in UAV task enviroments. However, few collaborative requirements analysis methods exist, and to our knowledge, no method exists that captures design requirements for collaborative decision making in complex, time-critical environments. This report describes the development of a new design requirements analysis method for deriving information and functional requirements that address the collaboration needs of UAV (and other complex task) operators, and the needs of stakeholders interacting with these operators. More specifically, theis method extends a recently developed requirements analysis method, called the Hybrid Cognitive Task Analysis (CTA) method, which enables the generation of information and functional requirements for futuristic UAV system interfaces. The original Hybrid CTA method focused on deriving single user system interface requirements. This work extends this method by introducing analytic steps to identify task and decision-making dependencies between different UAV operations collaborators. This collaborative extension to the Hybrid CTA utilizes the notion of boundary objects, an analytic construct commonly used in the study of group work. Boundary objects are physical or information artifacts that cross the task boundaries between members of distinct groups. Identifying boundary objects in complex task operations help the analyst to identify task and decision-making dependencies between local and remote collaborators. Understanding these dependencies helps to identify information sharing requirements that the UAV system should support. This report describes the analytic steps of the collaborative extension, and provides background information on the original Hybrid CTA method and the boundary object construct. The report also describes a project in which the new design requirements method was used to revise a proposed set of UAV operator displays.Prepared For Boeing Phantom Work
    • …
    corecore