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Mitigation of Human Supervisory Control Wait Times

through Automation Strategies

by

P.J. Mitchell, M.L. Cummings, and T.B. Sheridan

Executive Summary

The application of network centric operations principles to human supervisory control
(HSC) domains means that humans are increasingly being asked to manage multiple
simultaneous HSC processes. However, increases in the number of available infor-
mation sources, volume of information and operational tempo, all which place higher
cognitive demands on operators, could become constraints limiting the success of net-
work centric processes. In time-pressured scenarios typical of networked command
and control scenarios, efficiently allocating attention between a set of dynamic tasks
is crucial for mission success. Inefficient attention allocation leads to system wait
times, which could eventually lead to critical events such as missed times on targets
and degraded overall mission success. One potential solution to mitigating wait times
is the introduction of automated decision support in order to relieve operator work-
load. However, it is not obvious what automated decision support is appropriate, as
higher levels of automation may result in a situation awareness decrement and other
problems typically associated with excessive automation such as automation bias.

To assess the impact of increasing levels of automation on human and system per-
formance in a time-critical HSC multiple task management context, an experiment
was run in which an operator simultaneously managed four highly autonomous un-
manned aerial vehicles (UAVs) executing an air tasking order, with the overall goal
of destroying a pre-determined set of targets within a limited time period. Four in-
creasing levels automated decision support were investigated as well as high and low
operational replanning tempos. The highest level of automation, management-by-
exception, had the best performance across several metrics but had a greater number
of catastrophic events during which a UAV erroneously destroyed a friendly target.
Contrary to expectations, the collaborative level of decision support, which provided
predictions for possible periods of task overload as well as possible courses of action
to relieve the high workload, produced the worst performance. This is attributable
to an unintended consequence of the automation where the graphical visualization of
the computer’s predictions caused users to try to globally optimize the schedules for
all UAVs instead of locally optimizing schedules in the immediate future, resulting in
them being overwhelmed. Total system wait time across both experimental factors
was dominated by wait time caused by lack of situation awareness, which is difficult
to eliminate, implying that there will be a clear upper limit on the number of vehicles
that any one person can supervise because of the need to stay cognitively aware of
unfolding events.
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Chapter 1

Introduction

1.1 Motivation

As modern technology continues to evolve, the role of humans in many systems is
shifting from manually controlling a system to that of supervising the system, oth-
erwise known as human supervisory control (HSC). HSC is the process by which a
human operator intermittently interacts with a computer, receiving feedback from and
providing commands to a controlled process or task environment which is connected
to that computer. Figure 1-1, adapted from Sheridan [38], illustrates this concept.
Human supervisory control is comprised of five generic functions, usually accom-
plished in the following cyclical order: planning a computer-based task, teaching the
computer what was planned through various inputs, monitoring the computer’s ac-
tions for errors and/or failures, intervening when the plan has been completed or the
computer requires assistance, and then the human learns from the experience [38].

Figure 1-1: Human Supervisory Control [38]

As HSC tasks are primarily cognitive in nature and generally do not require con-
stant attention and/or control, it is possible for humans to effectively supervise mul-
tiple simultaneous HSC processes. For example, a single air traffic controller can
handle multiple aircraft because the onboard pilots handle the flying task, while the
controller is primarily concerned with navigation and deconfliction tasks that do not
require constant attention. In order to maximize human performance for the purposes
of cost reduction, efficiency, and safety, there is considerable interest in increasing the
number and type of HSC processes a single human can handle. Therefore, it is ever
more common for humans to be engaged in multiple HSC task management.
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1.1.1 Network Centric Operations

Network Centric Warfare (NCW) is a concept of operations envisioned to increase
combat power by effectively linking or networking knowledgeable entities in a bat-
tlespace. Greater combat power is generated through the creation of shared sit-
uational awareness, increased speed of command, self-synchronization, and higher
operational tempo, lethality and survivability [1]. NCW’s basic tenets (Figure 1-2)
are as follows [11]:

1. A robustly networked force improves information sharing.

2. Information sharing and collaboration enhance the quality of information and
shared situational awareness.

3. Shared situational awareness enables self-synchronization.

4. These, in turn, dramatically increase mission effectiveness.

A force with these capabilities is therefore able to increase combat power by lever-
aging information superiority. This is a substantial change from the past when tra-
ditional methods for boosting combat power were driven by numerical superiority.

Figure 1-2: Tenets of NCW [23]

NCW is a broad concept that is applicable to many different HSC domains other
than the military, such as commercial aviation, business ventures, and emergency
response agencies who are also attempting to leverage intelligent information networks
to produce superior performance in time critical settings. However, the primary
advantage of operations based upon the tenets of NCW (network centric operations
or NCO), that of rapid access to information across the network, will likely be a
major bottleneck and possible point of failure for those humans who must synthesize
voluminous data from the network and execute decisions in real-time, often with
high-risk consequences under significant uncertainty. Network-centric operations will

18



Figure 1-3: The Desert Hawk Miniature Unmanned Aerial Vehicle

bring increases in the number of available information sources, volume of information
and operational tempo, all which place higher cognitive demands on operators.

In time-pressured scenarios like those typical of command and control, efficiently
allocating attention between sets of dynamic tasks becomes critical to both human
and system performance. Inefficient attention allocation could lead to system wait
times, which might eventually lead to degraded overall mission success. For example,
consider the role of an Air Warfare Coordinator (AWC) on a naval ship engaged in an
air defense. The AWC’s responsibilities include identifying unknown air tracks, mon-
itoring previously identified tracks, issuing warnings to enemy or unknown aircraft
reaching minimum distances from the ship, and providing launch orders for defensive
counter measures, if required. This is a HSC system, as the operator is exerting indi-
rect control over friendly forces, commercial aircraft and maybe even enemy aircraft in
the immediate area of the ship. It is likely that this operator will have many simulta-
neous tasks to supervise, and if saturated, system wait times could be incurred due to
the high workload of the human operator. Inefficient attention allocation could lead
to an increase in wait times such that, for example, friendly aircraft receive orders too
late to prevent enemy aircraft from attacking, resulting in a damaged or sunk ship. It
is also possible that if the human in the decision loop is saturated, disengagement of
aircraft or weapons systems prosecuting an inappropriate target such as a commercial
aircraft could also be missed.

1.1.2 Unmanned Aerial Vehicles

An unmanned aerial vehicle (UAV) is a powered, aerial vehicle that does not carry
a human operator, can fly autonomously or be piloted remotely, is expendable or
recoverable, and can carry a lethal or non-lethal payload [10]. They are remotely
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Figure 1-4: The Predator MQ-1 Unmanned Combat Aerial Vehicle

controlled or autonomous aircraft used primarily in military applications for surveil-
lance or strike missions, and can range in size from handheld miniature vehicles such
as the Desert Fox (Figure 1-3) to more long range vehicles such as the Predator (Fig-
ure 1-4). The range of commercial applications for UAVs is growing very quickly, as
they have found use in border patrol, law enforcement, fire fighting, agriculture, and
weather monitoring applications, amongst others. The Aerosonde (Figure 1-5) is an
example of a UAV with established uses in weather and atmospheric monitoring.

Unmanned aerial vehicles have been increasingly utilized by militarized forces
around the world in recent years to take advantages of their reduced radar signature,
increased endurance and decrease in both capital costs and potential loss of human life
during operations in hostile territory. The growing importance of UAVs is reflected
in the amount of funding allocated to them in the US Department of Defense’s (DoD)
budget: approximately $1 billion USD in 2004, up from $760 million USD in 2002
and $360 million USD in 2003 [30].

To take full advantage of UAVs in network centric operations, it is desired to have
larger “swarm” of vehicles operating in concert. An integral part of this vision involves
dramatically changing the number of operators it takes to effectively supervise these
vehicles. Multiple operators are currently required to supervise and control the largest
and most complex unmanned combat aerial vehicles (UCAVs) such as the Predator,
which has a crew of three directly controlling it and a support staff many times
this number. In the future, the goal is to invert this ratio so that a single operator
supervises the operations of multiple UAVs, and thus this becomes a multiple HSC
attention allocation problem. To do so will not only require significant advances in
onboard vehicle control and autonomy, but also in the interfaces used for human-
computer interaction. Cummings and Guerlain [9] found that Navy personnel were
able to effectively manage up to 12 simulated re-targetable Tomahawk missiles, which
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Figure 1-5: The Aerosonde Unmanned Aerial Vehicle

are highly autonomous and do not require any intervention for in-flight stability
control and landing. However, the number of UAVs that can be effectively supervised
by operators is likely fewer, as they can perform a far wider variety of tasks and
usually require some level of flight and navigational control from the human. Ruff et
al. [35] studied operators controlling up to 4 autonomous UAVs, and Wickens et al.
[44] designed a similar simulator where operators supervised two vehicles. Both found
that operators could adequately manage these numbers of UAVs so long as they had
a basic level of decision support. Significant performance decrements were seen under
more manual forms of decision support, which indicates that a major limiting factor
on how many vehicles can be effectively supervised is operator workload. As operator
workload increases to saturation, the amount of time vehicles have to wait to receive
attention when they need it, either for goal state changes or emergency operations,
will steadily increase, potentially degrading mission effectiveness.

1.1.3 Automated Decision Support

One potential solution to mitigating system wait times in human supervisory control
of UAVs is the introduction of automated decision support in order to relieve operator
workload. For example, an accident with a Predator occurred in Bosnia in 1999 simply
because the operators experienced an unusual flight condition, aircraft icing, and the
added workload associated with this unusual state dramatically increased the system
wait time beyond critical levels. Introduction of automated decision support through
automatic flight control would have decreased wait times sufficiently such that the
accident could have been avoided. However, it is not obvious what automated decision
support is appropriate in general for multiple UAV supervision, as higher levels of
automation (LOA) may result in a situation awareness decrement and automation
bias, which occurs when a human decision maker does not search for or disregards
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contradictory information to computer-generated solutions. This problem has been
studied to some degree by Ruff et al. [35] and Wickens et al. [44], but they focused
solely on human performance metrics, and did not consider the overall system in their
evaluations. In the future vision of allowing a single operator to control multiple
unmanned vehicles, it is not well understood how operators will manage multiple
vehicles, what kind of decision support will aid or hinder the operator, and how
human cognitive limitations will impact overall system effectiveness.

1.2 Problem Statement

The primary questions for this research effort are:

• How do how unmanned vehicle operators cope with managing multiple simul-
taneous human supervisory control processes, particularly under high workload
conditions?

• What amount and types of decision support can best aid operators in these
situations?

• What effects do human performance limitations have on system performance?

1.3 Research Objectives

The research objectives of this report, in the context of multi-vehicle, time-critical
human supervisory control are:

• to develop and validate a model of system wait times,

• to present conclusions on how system wait times and human performance in-
fluence each other, and consequently what the implications of this are on the
ability of humans to effectively supervise multiple autonomous vehicles,

• to determine what levels of automation are best for supporting operators in
terms of both human and system performance characteristics, and

• to study the general cognitive strategies employed by overloaded operators.

1.4 Report Organization

This report is organized into the following seven chapters:

• Chapter 1, Introduction, introduced and described the motivation and objectives
for this study.
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• Chapter 2, Background, provides an introduction to past human factors work
in multiple UAV control and supervision, and frames the research objectives
outlined above in the context of this prior work. A wait time model is introduced
as a metric of system performance and the effect of levels of automation on this
wait time model is discussed.

• Chapter 3, Simulation and Interface Design, presents the details of an interface
and simulation developed to study human and system performance issues in-
volved with the human supervisory control of multiple vehicles in time-critical
applications.

• Chapter 4, Hypotheses and Methods, discusses predicted system performance
trends with increasing levels of automation, and presents the details of an ex-
periment conducted with the program described in the Simulation and Interface
Design chapter.

• Chapter 5, Results, presents the statistical results of the experiment described
in the Methods chapter.

• Chapter 6, Discussion, compares the results with the hypotheses outlined in the
Hypotheses and Methods chapter and discusses how they answer the primary
research questions of this study.

• Chapter 7, Conclusion, summarizes the key findings of this study and presents
concluding remarks. Recommendations for future work are also suggested.
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Chapter 2

Background

This chapter provides a summary of relevant prior human factors work in multiple
vehicle control and supervision from both the human and system perspectives. It
then shows how the goals of this research attempt to address the gap between these
two approaches to system design.

2.1 Overview

The application of network centric warfare principles to human supervisory control
domains means that humans are increasingly being asked to manage multiple simul-
taneous HSC processes. At the same time, NCO brings greater amounts and variety
of information to the operator, placing potentially overwhelming cognitive demands
on them. One information overload strategy is to introduce automated systems of
varying degrees to relieve operator workload so that overall mission performance is
improved. Previous work has been conducted to study human performance and UAV
control with varying levels of automation, but these studies did not fully explore the
impacts on overall system performance [34, 45]. At the same time, the problem of
workload and control of multiple vehicles has been studied from the system perspec-
tive without regard for cognitive human-system interaction issues [27]. This chapter
discusses these separate approaches and then relates them to each other to identify
the gap that this research attempts to address.

2.2 Human Performance

Gawron [16] and Mouloua et al. [25] provide informative summaries of the many
human factors issues associated with UAVs. Significant effort has been expended on
developing better visualization techniques and interfaces to improve UAV operators’
performance and situation awareness (for example, Draper and Ruff [12], Wickens
et al. [44]), but very few detailed efforts have investigated how to properly allocate
tasks between UAVs and operators, and in particular between multiple UAVs and
operators. Current operations of large scale UAVs require many operators per vehicle
because of the need for humans to perform low level tasks such as flight control and
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image processing. However, in the future it is likely the level of autonomy built into
such vehicles will increase to the point that the human’s role becomes supervisory in
nature. As it is desired to eventually invert the ratio of many operators controlling
one vehicle to one operator supervising many vehicles, there is a need for greater
vehicle autonomy and higher levels of decision support for operators. However, it is
not clear what degree of autonomy and/or decision support is optimal to support this
goal.

2.2.1 Appropriate Levels of Automation

Automation allocation for decision support can range from fully automatic where
the operator is completely left out of the decision process to minimal levels where
the automation offers basic data filtering or recommendations for the human to con-
sider. Table 2.1, originally proposed by Sheridan and Verplank [39], outlines a scale
commonly used to characterize the allocation of function between man and machine.
Human interaction with automation represents a range of intermediate levels from
1-6 on this scale.

Automation Automation
Level Description

1 The computer offers no assistance: human must take all decision and actions.
2 The computer offers a complete set of decision/action alternatives, or
3 narrows the selection down to a few, or
4 suggests one alternative, and
5 executes that suggestion if the human approves, or
6 allows the human a restricted time to veto before automatic execution, or
7 executes automatically, then necessarily informs humans, and
8 informs the human only if asked, or
9 informs the human only if it, the computer, decides to.
10 The computer decides everything and acts autonomously, ignoring the human.

Table 2.1: Levels of Automation [39]

For routine operations, higher levels of automation in general result in lower work-
load, while the opposite is true for low levels of automation [20]. The relationship
between workload and performance is illustrated in Figure 2-1, which is adapted to
the Yerkes-Dodson Law [46]. This illustration shows that optimal human perfor-
mance occurs at moderate levels of workload. As a consequence, there is an optimal
level of workload, and thus an optimal level of automation whereby performance is
maximized for a particular task. Therefore, performance degradation can occur if a
LOA for a task is selected that is too high or too low. If the LOA is too high, HSC
problems can include: 1) manual or mental skill degradation, 2) loss of situational
awareness, 3) automation brittleness and literalism, and 4) increased time and diffi-
culty to diagnose failures and manually take over when required [3, 29]. If the LOA
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Figure 2-1: The Yerkes-Dodson Law [46]

is too low, potential HSC problems can include: 1) cognitive and working memory
overload in routine tasks under time pressure, 2) human decision biases and heuris-
tics, 3) lack of repeatability and consistency, 4) complacency and boredom, and 5)
greater human interdependency and chaos under failure [3, 29]. As a consequence,
care must be taken to consider each of the roles human and machine should perform
in a given task, and automation only introduced when there is a specific need to do
so.

2.2.2 The Impact of Automation on Human Performance

Several previous studies have investigated levels of automation in the context of mul-
tiple UAV supervisory performance. Ruff et al. [35] conducted a study that looked at
the effects of level of automation and decision-aid fidelity in human interaction with 1,
2 and 4 UAVs. They found that a medium level of automation called management-by-
consent, which corresponds to an automation level of 5 on the scale of Table 2.1, had
significant advantages over manual control (Level 1, Table 2.1) and management-by-
exception (Level 6, Table 2.1) supervisory control schemes. This level of automation
had the highest levels of operator situation awareness (SA) and performance, though
subjective workload ratings were not always better. Performance declined sharply as
the number of supervised UAVs increased in the manual control condition, suggesting
significant levels of automation are required for acceptable performance in supervising
multiple vehicles.

Ruff et al. [34] later examined the effects of automation on task completion time
and subjective workload levels in the control of two or four UAVs. A management-
by-consent level of automation (Level 5, Table 2.1) was compared to management-by-
exception (Level 6, Table 2.1), and no significant differences in performance or work-
load were initially found between the levels. It was hypothesized this result was due
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to a common behavior exhibited by subjects where they were likely to act on the au-
tomation’s recommendation before the automation carried out the action under LOA
6. Subjective workload ratings were higher and performance lower for four UAVs than
with two. A follow-up experiment then kept the number of UAVs constant at four
and the time limit to over-ride the management-by-exception automation was made
an independent variable. It was found that there still was no performance difference
between automation conditions, but shorter time limits to over-ride the computer
in management-by-exception caused higher workload and poorer performance. An
important finding from this study was that subjects using management-by-exception
(Level 6, Table 2.1) did not use the automation as intended. Upon receiving a notifi-
cation of what the automation was planning to execute, users consistently executed
it themselves manually instead of letting the computer take over. This suggests that
subjects may not have been properly evaluating or did not trust the computer’s rec-
ommendations.

Under the Defense Advanced Research Projects Agency (DARPA) Mixed-Initiative
Control of Automata (MICA) program, some research has been conducted into the
development of unmanned combat aerial vehicle controllers that enable small teams
of operators to effectively task large teams of aircraft. Linegang et al. [22] set out
to determine what information requirements human operators needed to effectively
use and interact with such systems. They found that it was particularly difficult to
convey to the user a dynamic understanding of a mission in both space and time,
which is critical for high levels of operator SA. Timeline and map-based components
of an interface were recommended to overcome this. Under the same research pro-
gram, Roth et al. [32] evaluated a prototype mixed-initiative interface intended for
the supervisory control of multiple vehicles, with the intent of investigating to what
extent human operators were able to understand mission plans for the UAVs that
were generated by automated controllers. They found that while humans could un-
derstand the plans created, they could not understand the rationale behind them.
Therefore, operators had low SA as they were not able to evaluate the effectiveness
of the automatically generated plans and could not predict the effects of changing
them. The conclusion that can be drawn is that in multiple UAV control, operators
using high levels of automation may perform very well under nominal conditions but
likely will not be able to cope as well with uncertainty in the mission plan.

Wilson and Russell [45] investigated whether adaptive automation based on psy-
chophysiologic cueing could be used to relieve operator taskload during periods of
high workload, and in so doing improve task performance. Subjects performing a
UCAV target identification task showed improved hit rates on targets and less missed
weapons release points under adaptive aiding, thus showing the benefits of mitigat-
ing operator workload in potential overload situations. However, the adaptive aiding
used in the study decreased the velocity of the UAV and did not actually change the
level of automation for the human controller. Modifying mission parameters to relieve
operator workload is often not a viable option in time-critical applications, as UAVs
generally must operate within strict windows of time. This is an example of what
can occur when system designers only incorporate human performance considerations
into their designs and ignore hard environmental (system) constraints.
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2.3 System Performance

2.3.1 Wait Times

In previous work modeling human-robot (ground-based) interaction and operator
capacity for supervisory control, it has been proposed that the number of robots or
vehicles a single individual can control is given by Equation 2.1 [17, 26, 27].

FO =
NT

IT
+ 1 (2.1)

In this equation, FO (Fan Out) equals the number of robots a human can effec-
tively control, NT (Neglect Time) is the expected amount of time that a robot can
be ignored before its performance drops below some acceptable threshold, and IT
(Interaction Time) is the average time it takes for a human to interact with the robot
to ensure it is still working towards mission accomplishment. The addition of one
in Equation 2.1 represents the baseline condition in that an operator can control a
single robot. While originally intended for ground-based robots, this work has direct
relevance to more general human supervisory control tasks where operators are at-
tempting to simultaneously manage multiple entities, such as in the case of UAVs.
Fan out is a measure of workload, as the smaller the ratio of NT to IT gets, the
greater the proportion of time that the operator has to spend attending to a single
vehicle.

Modeling interaction and neglect times are critical for understanding human work-
load in terms of overall management capacity, but there remains an additional critical
variable that must be considered when modeling human control of multiple robots,
regardless of whether they are on the ground or in the air, and that is the concept of
Wait Time (WT). In HSC tasks, humans are serial processors in that they can only
solve a single problem or task at a time [4], and while they can rapidly switch between
cognitive tasks, any sequence of tasks requiring complex cognition will form a queue
and consequently wait times will build. In the context of a system of multiple vehicles
or robots in which two or more vehicles will likely require attention simultaneously
from a human operator, wait times are significant in that as they increase, the actual
number of vehicles that can be effectively controlled decreases, with potential nega-
tive consequences on overall mission success. Figure 2-2 illustrates how wait times
could impact an overall system.

In multiple vehicle supervisory control, operators interact with a robot or vehicle
to bring its performance to some acceptable performance threshold and then neglect
it until such time that it requires assistance. Performance may degrade gradually
over time (NT2 in Figure 2-2), or very suddenly with a discrete event (NT1 in Figure
2-2). For example, if a robot has a directional gyro that is slightly miscalibrated
and it is instructed to autonomously reach a certain navigational point, its position
error increases gradually over time until the human chooses to interact with it again.
A discrete event causing a sudden drop in performance such that a robot requires
immediate operator assistance is a system failure or the need for clarification of a
goal state. Sliding degradation is much harder for operators to correct, because
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Figure 2-2: Vehicle Effectiveness Over Time, Broken Down into IT, NT, and WT

the rate of change of a system state may be so gradual that the operator does not
detect it immediately. In this case, performance is significantly degraded without the
operator realizing that they need to intervene. In either case, as soon as the robot’s
performance level decreases below a specified level or threshold, wait time begins.
This is shown as a static, constant line on Figure 2-2, but this performance threshold
may change depending on the task at hand.

While interaction and neglect times are important in predicting human capabilities
for handling multiple robots, for those domains that are time-critical and high risk
like UAVs, WT becomes a critical point for possible system failure. In many ground-
based robot applications such as mine-sweeping, waiting for human interaction may
not be critical, but certainly for UAVs and UUVs (unmanned underwater vehicles)
with expected time on targets and dynamic threat areas, waiting is not only sub-
optimal, it can be extremely hazardous. While most robots and vehicles can be
programmed to follow some predetermined contingency plan if they do not receive
required attention, mission success will likely be significantly degraded if wait times
grow unexpectedly.

From the robot or vehicle perspective, WT imposed by human interaction (or lack
thereof) can be decomposed into three basic components: 1) wait time in the human
decision-making queue (WTQ), 2) interaction wait time (WTI), and 3) wait time due
to loss of situation awareness (WTSA). For example, suppose an operator is control-
ling two robots on a semi-autonomous navigation task (much like the Mars Rovers).
While typical operations involve human interaction with a single vehicle, there will
be times when both vehicles require attention simultaneously or near-simultaneously.
When this occurs, if the human operator begins assisting the first robot immediately,
the first robot must wait while the operator solves the problem and then issues com-
mands to it (WTI1). For the second robot, the time it waits in the queue (WTQ2) is
effectively WTI1. If an operator does not realize a robot or vehicle needs attention,
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the time from the initial onset of the event to actual operator intervention could range
from seconds to minutes. This wait time induced by lack of recognition for required
intervention is an example of WTSA.

IT, which was previously defined as the time it takes for a human to interact
with a robot, can be further decomposed. IT is the time during which a human’s
attention is focused on a single robot in order to solve a problem or induce some
change to improve performance above a specified threshold. From the human per-
spective, IT includes the time required to determine the nature of the problem, solve
the problem, and communicate that solution to the robot, with some type of feed-
back. Thus the robot must wait some period of time during the “interaction” due
to the human decision-making process. In teleoperation where the human is directly
controlling a robot’s movements and positions, interaction wait times might be very
small, and occur in rapid succession as the controller adjusts commands according to
sensor feedback. However, in other scenarios that require minimal manual control but
significant cognitive input such as the need to provide a new mission to a UAV, WTI
can be quite large depending on the complexity of the problem. Previous research
has indicated that system interaction times of operators should not exceed 0.7 of the
total system operating time due to cognitive and physical limitations [33, 36].

WT =
X∑

i=1

WTIi +
Y∑

j=1

WTQj +
Z∑

k=1

WTSAk (2.2)

FO =
NT

IT + WT −∑X
i=1 WTIi

+ 1 (2.3)

Equation 2.2 provides a formal definition of wait time that will be used for the
remainder of this report. It categorizes total system wait time as the sum of the
interaction wait times, which are the portions of IT that occur while the vehicle is in
a degraded state (WTI), wait times that result from queues due to near-simultaneous
arrival of problems (WTQ), plus wait times due to operator loss of SA (WTSA). In
Equation 2.2, X indicates the number of times an operator interacted with a vehicle
while the vehicle was in a degraded state, Y indicates the number of interaction queues
that build, and Z indicates the number of time periods in which a loss of SA causes
a wait time. Equation 2.3 demonstrates how the Fan Out equation (Equation 2.1)
would change as a result of the inclusion of wait times. WTI must be subtracted from
the denominator of Equation 2.3 because WTI is a subset of IT, and WTI’s inclusion
in the wait time formula means it would otherwise be replicated. The addition of
wait time to the denominator of this equation is likely to significantly decrease the
predicted number of vehicles one person can control, as aggregate wait time can be
many times the size of IT.

2.3.2 The Impact of Automation on System Performance

It is not clear what effect the level of automation of a human supervisory control
task has on the various types of wait times, and what the overall system effectiveness
will be as these wait time components change in magnitude and proportion to one
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another. The following section will make predictions of trends across different levels
of automation which will be compared to results later on in this report.

Interaction Wait Time (WTI)

Olsen and Goodrich [26] described four components of IT as 1) vehicle monitoring and
selection (VMS), 2) context switching and acquisition (CSA), 3) planning or problem
solving (PPS), and 4) command expression (CE). As outlined above, interaction wait
time is a subset of IT that occurs when any or all parts of these stages take place while
the vehicle requires human input. In general, increasing levels of decision support
should decrease vehicle selection time, as a primary goal of automation in this context
would be to more quickly identify problem states. Context switching and acquisition,
the next step in the interaction process, occurs when operators attempt to update
their knowledge of the new vehicle’s current goals and problems. The process of CSA
in conjunction with VMS can incur a “switching cost” in which switching between
tasks incurs added cost in terms of wait time because of the cognitive need to orient
to the new problem. Switching costs are not incurred simply as a function of change
detection, but occur as an operator regains the correct mental model and situation
awareness needed to solve the new problem.

Switching costs in terms of added wait times will occur because in the control of
multiple UAVs, operators spend time monitoring unfolding events, but periodically
engage in interactive UAV control tasks. This need to concentrate on a task, yet
maintain a level of attention for alerts causes operators to have a conflict in mental
information processing. Interrupt-driven processing, needed for monitoring alerts,
occurs when people are sensitized to possible problems and expect distraction. This
is the mode operators supervising multiple UAVs will nominally find themselves in
when missions are executed according to plan. Concentration on a task, like that
needed for UAV intervention, requires task-driven processing which is likely to cause
decreased sensitivity or attention to external events. While interrupt and task driven
processing can both be present in a person, attention must be shared between the
two and switching can incur cognitive costs that can potentially result in errors [24].
Therefore, switching costs are expected to be higher for very low levels of automation
as there is a greater demand for task-driven processing at low automation levels.

The planning/problem solving stage of interaction time occurs when the operator
plans a course of action for the selected vehicle. In general, increasing levels of
automation should lower planning times because the computer takes progressively
more decision options away from the human and/or aids the human by executing
some of the planning steps. As the human is presented with fewer or no alternatives,
they have a smaller problem space to explore, though this limitation may result in
less than ideal solutions.

The last stage of interaction wait time is the execution or command expression
stage. In this stage, users must express their intent to the vehicle by mapping it onto
a series of actions that the vehicle can understand. Increasing levels of automation
are likely to decrease this time as well because higher levels of automated decision
support may not require human command intent to execute some or all functions, or
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it may offer the human a single or limited options to choose from in terms that the
vehicle already understands.

With the exception of CSA, all the components of WTI follow the same trend of
decreasing with increasing levels of automation. Therefore, unless CSA dominates all
other components of WTI at very high or very low levels of automation, WTI should
decrease with increasing levels of automation.

Wait Time in the Queue (WTQ)

In the context of human supervisory control and multi-UAV management, the ele-
ments of an operator’s queue are tasks that the operator must perform, such as firing
on a target, re-planning a route, or assigning an emergent target to a particular UAV’s
mission plan. In the context of queuing theory, the operator’s tasking can be thought
of as a preemptive priority queue with a single server. The time of the service rate,
the average time an operator takes to attend to a vehicle, is essentially the average
WTI. As previously mentioned, WTI for the vehicle in service corresponds to addi-
tional queuing wait time for all the vehicles in line. From the above discussion, WTI
is predicted to decrease with increasing levels of automation, so the same trend can
be expected with service rate. The arrival rate is the average time between tasks that
the operator must perform, and is dependent upon the scenario complexity and the
number of UAVs to be controlled, amongst other things. Within this framework, it
can then be seen that utilization of the operator will decrease with increasing level
of automation, and therefore the average wait time in the queue will decrease, po-
tentially in a non-linear way. A small increase/decrease in individual vehicle WTI
can have a much larger impact on WTQ, particularly as the number of tasks in the
queue becomes large. The implications of this are that there could be a much steeper
increase in WTQ at the lowest levels of automation.

Situation Awareness Wait Time (WTSA)

WTSA is perhaps the most difficult wait time component to model because it rep-
resents how cognitively engaged and aware an operator is in the task. Situation
awareness is generally defined as having three levels, which are: 1) the perception
of the elements in the environment, 2) the comprehension of the current situation,
and 3) the projection of future status [13, 14]. An example of a WTSA would be the
failure of an operator to notice a message from a UAV that notified her of a failure
which rendered it useless for the remainder of a mission, such as an inability to re-
lease weapons. The time it takes for the operator to process the message and task the
appropriate UAV to return to base would be a WTSA. While notifications and cri-
tiquing devices included in decision support systems can help to alleviate added wait
time due to loss of SA, it is still an event that at the very least, should be included
as a probabilistic variable in a larger model of wait time for human interaction with
multiple vehicles.

As an operator’s level of SA can decrease under high workload due to competition
for attentional resources [43], but also decrease under low workload due to boredom
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and complacency [31], it can be concluded that optimum level of operator SA occur
under moderate levels of workload. It is predicted that WTSA will follow the opposite
trend. Therefore, medium levels of automation should have the lowest accumulated
WTSA, while very low or very high LOAs should have higher WTSA.

Very high levels of automation should eliminate any wait time due to the loss of
SA, but only for planned events. A primary concern with highly automated systems is
that when an unanticipated event occurs, automated systems often arrive at erroneous
solutions and humans do not have enough SA to recognize the failure mode. Because
of the propensity of human towards automation bias in command and control settings
[5] which can be exacerbated by the loss of SA, it is possible that an operator will
not veto erroneous automated actions, thus causing some potentially catastrophic
event. Indeed, this problem was seen recently in the 2004 war with Iraq when the
US Army’s Patriot missile system engaged in fratricide, shooting down a British
Tornado and an American F/A-18, killing three. This avoidable loss of life occurred
because human operators did not recognize the guidance system had erroneously
locked onto aircraft instead of enemy missiles. It is exactly in this kind of instance
where highly automating the system to reduce wait times caused by humans should
be very carefully considered.

2.3.3 Wait Time Costs

The preceding discussion on wait times has not mentioned their cost. A wait time cost
measure is needed because wait times alone don’t quantify how much impact they
have on a particular mission. It can be inferred that higher wait times are related to
higher costs in performance, but the threshold at which they incur a cost needs to
be identified. In addition, the context in which wait times occur may have an even
greater influence on overall system performance. For example, a typical mission for
a UCAV such as a Predator involves striking targets at precise times. If the mission
planner has built in additional “slack” time into a route so that the UAV may incur
wait times without missing its deadline, then the cost of wait time is relatively low
until all of the slack time is used, whereas any additional wait time will cause the
UAV to fail to destroy a target on time. This could have a very high potential cost if
the target was of strategic importance. Freed et al. [15] has quantified wait time cost
with respect to UAV surveillance for the purpose of evaluating computer algorithms,
but more research is needed in this area.

2.4 Conclusion

Several studies, particularly those conducted by Ruff et al. [34, 35], have investigated
what levels of automated decision support are appropriate for multiple UAV supervi-
sory tasks. The general conclusions are that manual levels of decision support might
perform adequately when controlling smaller numbers of UAVs, but larger numbers
of UAVs quickly overwhelm operators. Higher levels of decision support, LOA 6 and
higher from Table 2.1, appear to have performance advantages over lower levels of
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decision support under nominal conditions, but operators are likely to have degraded
SA and therefore cannot adapt to abnormal, unexpected conditions. Review of cur-
rent literature suggests that to strike the best balance between performance and SA,
moderate levels of automation, LOAs 4 or 5 (Table 2.1) should be used.

However, all of these studies focused solely on human performance metrics and did
not consider the overall system in their evaluations. From the system performance
perspective, it is important to model the sources of wait times, especially since these
times could potentially lead to system failure. The impact of increasing levels of
automation on overall wait times is unclear, but some trends can be predicted for
individual wait time components. In particular, wait times due to interaction and
queuing should decrease with level of automation, while those due to situation aware-
ness should increase only at very low or high levels of automation.

The remainder of this report will seek to extend previous work on appropriate
levels of automation for time-critical multiple HSC tasks, specifically for UAV super-
vision, but from a mission-centered as opposed to a human-centered perspective. In
addition to the previous studies that examined automation strategies, in this research,
human and system performance will be measured simultaneously and evaluated both
individually and against each other.
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Chapter 3

Simulation and Interface Design

This chapter presents the details of a multiple vehicle supervisory control simulation
and interface developed to study the effects of automation levels on human and system
performance in time critical applications. Explanations of this program’s function-
ality, appearance, and usage are outlined, and the rationale behind the program’s
design is offered.

3.1 Overview

In order to study how levels of automation affect temporal constraints in human su-
pervisory control multiple task management, a dual screen simulation test bed named
the Multi-Aerial Unmanned Vehicle Experiment (MAUVE) interface was developed
(Figure 3-1) that allows an operator to effectively supervise four UAVs simultane-
ously, and intervene as the situation requires it. In this simulation, users take on the
role of an operator responsible for supervising four UAVs tasked with destroying a
set of time-sensitive targets in a suppression of enemy air defenses (SEAD) mission.

Figure 3-1: The MAUVE Dual Screen Interface
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UAV Action Color
Enroute Blue
Loitering Orange

Arming Payload Yellow
Firing Payload Red

Battle Damage Assessment Brown
Return to Base Green

Table 3.1: Color Coding of UAV Actions in MAUVE

The simulated UAVs in MAUVE are highly autonomous, and therefore only require
operators to provide high level mission planning and input execution actions to the
UAVs. The UAVs always launch with a pre-determined mission plan that comes from
an air tasking order (ATO), so initial mission planning, including target assignments
and routes, is completed prior to mission start. The operator’s specific tasking in the
MAUVE simulation is to monitor each UAV’s progress, re-plan aspects of the mission
in reaction to unexpected events, and in some cases manually execute mission critical
actions such as arming and firing of payloads.

The UAVs supervised by operators in MAUVE were capable of six high-level
types of actions in the simulation: 1) traveling enroute to targets, 2) loitering at
specific locations, 3) arming payloads, 4) firing payloads, 5) performing battle damage
assessment, and 6) returning to base. Battle damage assessment (otherwise known
as battle damage imagery or BDI) is the post-firing phase of weapons release where
it is determined whether the weapon(s) hit the target, and if the desired effect was
achieved. Table 3.1 outlines the color coding assigned to each of these actions in the
simulation.

3.2 Navigation Display

The left-hand side of the MAUVE interface is known as the navigation display, and it
consists of a mission time window, map display, and a mission planning and execution
bar (Figure 3-2).

3.2.1 Mission Time Window

At the top right of the map display is a mission time box showing both time elapsed
and time remaining in absolute and relative terms. Due to the time critical nature
of the set of targets to be destroyed and the large number of tasks to be performed
while supervising four UAVs, time management and scheduling is the fundamental
problem faced by operators in MAUVE. Operators are supported in meeting the
global deadline for the mission by the time remaining and end of strike timers, while
the time elapsed and current time displays aid operators in meeting local, individual
target deadlines.
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Figure 3-2: The MAUVE Navigation, Mission Planning and Execution Display

3.2.2 Map Display

The map display (Figure 3-3) represents a two-dimensional spatial layout of the bat-
tlespace, updated in real-time. The icons used in the map display (Figure 3-3) follow
the MIL-STD-2525B1 standard whenever possible, which is the US DoD interface
standard for common warfighting symbology. A legend very similar to Figure 3-3 was
available for users to toggle on or off as desired.

The UAVs on the display are numbered 1 through 4, and they independently
change colors according to the action being performed by them at each instant in
time (Table 3.1). Latitude and longitude markers on the left and top sides of the
window give operators absolute location references. The current mission plan for
each UAV is nominally indicated by thin black lines with arrows at the bisector of
each segment showing the direction of traversal. However, when a mission plan is
selected by a user in order to make changes to it, these black lines are replaced by
a thick light green line. For example, the green line around the route for UAV 4 in
Figure 3-3 indicates that it is currently selected by a user.

Targets are designated by a diamond-shaped icon, and are assigned a relative
importance to the mission plan (priority) of high (H), medium (M), or low (L). All

1A military standard (MIL-STD) is a specification which lists and explains a compilation of
prerequisites that an item must meet for US DoD acceptance.
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(a) Legend (b) Map Display

Figure 3-3: The Map Display with Legend

target names follow a naming convention of T-XXP, where “T” indicates it is a
target, “XX” is a unique identifying number, and “P” is its priority. All target
names are super-imposed on the relevant icon (Figure 3-4) and active targets are
differentiated from inactive targets by their color, which is either red or gray on the
display, respectively. An inactive target is any target that is destroyed or its TOT
deadline passed.

Waypoints, which are shown on the map display with black triangle icons, rep-
resent UAV turn points while enroute. Naming of waypoints follows the convention
WP-XY, where “WP” indicates the object is a waypoint, “X” is the UAV number that
the waypoint is associated with, and “Y” is a unique identifying letter for the specific
route. Loiter points are represented in a similar fashion. The naming conventions are
identical, except loiter point names begin with the letters “LP” and their icons have
an additional circle around the black triangle graphic. Functionally, a loiter point
is the same as a waypoint except that when a UAV reaches a loiter point, the UAV
loiters for a user-specified amount of time before moving on. Minor adjustment to
UAV routes on the map display can be made by selecting a particular waypoint or
loiter point (indicated by a dark green highlighting as seen at the top of Figure 3-3)
and dragging it across the display to the desired location. More significant routing
changes such as the addition or removal of waypoints, loiter points, or targets (to-
gether known as navigation points) is accomplished using the mission planning and
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Figure 3-4: An Active Target with Mouse-Over Pop Up Window

execution bar, which is described in Section 3.2.3.
Threat or hazard areas are always circular in shape, have a striped yellow coloring

pattern, and use the naming convention H-XX where “H” indicates the object is a
threat/hazard and “XX” is a unique identifying number. Threat areas can be dy-
namic throughout scenarios by either changing size, locations, disappearing entirely,
or periodically emerging. Users can obtain more detailed information about partic-
ular screen elements on the map display by briefly hovering the mouse cursor over
them. While doing so, a small orange pop-up window appears next to the screen
element (Figure 3-4) showing that screen element’s name, position in degrees latitude
and longitude, and if a target, the beginning and end of its TOT window. The TOT
window start and end times are designated by the “ToT” and “To” headings in the
pop-up (Figure 3-4).

3.2.3 Mission Planning and Execution Bar

Located on the far left of the navigation display, the mission planning and execution
bar (Figure 3-5), supports the majority of human interactions with the UAVs. Each
UAV has its own mission planning and execution bar that is selected by either clicking
on the desired UAV’s status window on the decision support display (Figure 3-7), or
on the UAV icon in the map display. As described in Section 3.2.2, light green
highlighting around the UAV’s status bar and its current mission plan in the map
display tell operators which UAV and route is currently selected.

Mission Planning

Through the mission planning interface, users can manipulate the set of targets each
UAV visits (including order of visitation), their deadlines, and the path the UAV
travels between them. A key element in mission planning is the target assignment
queue window (Figure 3-5). The target assignment queue lists all targets currently
assigned to a UAV in the order they will visit or have visited, so it serves as a
time history and future prediction of all targets currently assigned to that UAV.
Just like the map display (Section 3.2.2), inactive targets are grayed out in the list
to differentiate them from active targets. Battle damage assessment (BDA) can be
toggled “on” or “off” for a particular target by selecting the target in the target
assignment queue and clicking the “Target BDA” button to the immediate bottom
right of the window. A check mark beside a target indicates that battle damage
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Figure 3-5: The Mission Planning and Execution Bar

assessment is currently toggled “on”, or is scheduled for that target. BDA is semi-
automated, as the operator is responsible for scheduling BDA in advance, but the UAV
performs it automatically after firing, if scheduled. BDA must be scheduled before
the arming window for the associated target begins. Operators can also change the
order that targets will be visited by hitting the “Move up” or “Move down” buttons
beside the top right of the target assignment queue. In doing so, the mission paths
on the map display are automatically re-planned with straight line paths between
the new set (or ordering) of targets. All existing waypoints and loiter points on the
affected paths are deleted.

The “Request TOT Delay” button allows users to have a limited opportunities
to manipulate the set of TOTs they are attempting to meet in any given scenario.
Operators can request a time-on-target (TOT) delay for a given target for two reasons:
1) According to the current mission plan, a UAV is predicted to arrive late to that
target and therefore miss its deadline, or 2) for workload purposes, i.e., if an operator
feels they need to spread out workload to manage the UAVs more effectively. However,
this function must be used with care because moving back one target’s deadline affects
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a UAV’s arrival time at all subsequent targets. Users have to be careful that they
are not causing additional missed targets farther in the future in return for near
term gains. This change of TOT is a request, not a command, and the request
can be approved or denied. The probability of approval is a function of how far in
advance of the deadline the request is sent, as would likely be the case in true military
situations. The probability distribution for chance of approval is given by Equation
3.1. Subjects using the interface did not know the actual probability function driving
the rate of TOT request approval, but were told in training that if they wanted to
move a deadline, they had a greater chance of doing so farther in advance.

P (Approval) = 1.0− e−t/450 (3.1)

where t = time in seconds before deadline request was sent

When a TOT deadline is immediately approaching, the chance of approval is near
zero, but nearly 1.0 when requested 15 minutes in advance, which is as far ahead as
the decision support shows for higher levels of automation. A request always takes
five seconds to come back, and during this intervening time no other TOT requests for
any other targets can be made. Users can request as many TOT delays as they wish
for a given target, but there is no guarantee of ever having one approved. Requesting
TOT delays requires focused operator attention for extended periods of time, which
can be problematic because it may be more appropriate to focus on another more
time-critical task, such as re-planning a route due to an emergent threat.

Targets can be added and removed from specific UAV’s routes by hitting the “Add
Target” and “Remove Target” buttons. To add a target, an operator selects a target
from the list of eligible targets in the pull-down box immediately below the “Add
Target” button, and hits “Add Target”. In order for a target to be eligible to be
added to a route, it cannot be a part of any other route. In order to switch a target
to a different route, the operator must first remove it from one route and then add it
to another route. Therefore, a target can only be assigned to a single UAV at once.
When there are no unassigned targets in the battlespace, the option to add a target is
disabled entirely, as seen in Figure 3-5. The “Remove Target” button works similarly;
the only difference is that the target to be removed can additionally be selected by
clicking on it in the target assignment window. The “Remove Target” button is
primarily used to remove particular targets from the mission plan in situations where
a re-planning message gives orders to do so, but it is also used to re-assign targets
between different UAVs. The “Add Target” function is required when an emergent
target appears, when a missed target is added back to the schedule, or when an
operator wants to assign a target to a different route.

The final mission planning functions available to users of the MAUVE interface
are the ability to add and remove waypoints and loiter points. Removing waypoints
and loiter points is a simple two step process. First, users click on the waypoint or
loiter point on the map display that they want to remove, and then they hit the
“Remove Waypoint” or “Remove LoiterPoint” button. To add a waypoint, users hit
the “Add Waypoint” button and click on the map display where they want to place
it. Based on the currently selected route, the simulation attempts to add it to the
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Figure 3-6: A Series of Typical UAV Actions at an Active Target

nearest route segment. From there, users drag the waypoint to any desired location
on the map display. Adding a loiter point through the “Add LoiterPoint” button
works similarly, except upon placement, a dialog box appears on the map display
that asks users how long they wish to have the UAV loiter at that specific point.
Users can add waypoints to avoid threat areas, while loiter points can be used if a
user wants a UAV to remain in a certain area for a specific reason, such as when the
operator suspects a high priority emergent target might appear in a particular area
of the battlespace at a later time.

Mission Execution

The mission execution functions available in MAUVE are arming, firing, performing
BDA (described in Section 3.2.3), returning to base, and moving to another target.
Figure 3-6 shows a nominal sequence of mission execution events that a UAV performs
at an active target. The sequence occurs as follows: UAV 4 arrives at active target T-
1L before the start of that target’s firing window (1), loiters until the beginning of the
arming window (2), arms during the arming window (3), fires during the TOT window
(4), performs BDA immediately after firing (5) and after finishing BDA, moves onto
the next target automatically (6). Step 2 might be skipped if the UAV arrives late
to a target, i.e., in that target’s arming or firing windows. Step 6 (performing BDA)
is not required at every target.

The “Arm Payload” and “Fire Payload” buttons on the Mission Planning and
Execution Bar (Figure 3-5) are only enabled if the rules of engagement (RoE) (Ap-
pendix A) of the simulation are met. For arming, this means that the UAV is directly
on top of a target and the mission time is within the arming or firing windows, and
for firing it means that the UAV is at the relevant target, within the arming window,
and already armed. In either case, the arming or firing buttons are not enabled unless
the relevant action is predicted to finish by the end of the firing window.

The “Move to Next Target” button causes the selected UAV to start moving
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enroute to the next scheduled target, and can only be used in off-nominal situations.
It is required because the automation rules governing UAV behavior cause every UAV
arriving at an active target to loiter indefinitely unless the user intervenes, such as
arming and firing on that target. However, if arming and firing does not occur within
the appropriate windows, then that target is missed and the user needs a way to get
the UAV moving again. There could be situations in the simulation where the RoE
changes such that a previously designated target should not be destroyed, thus in this
case arming and firing on that target would not be appropriate. In terms of Figure
3-6, the “Move to Next Target” button is a way to go from Step 2 to Step 6 directly.

The “Return to Base” function causes all future targets, waypoints and loiter
points to be deleted from the individual UAV’s mission plan, and a straight line path
for that UAV is planned directly back to base. It is used whenever operators want to
get a UAV back to base as soon as possible.

3.3 Decision Support Display

The right-hand side of the MAUVE simulation is termed the decision support in-
terface, and it consists of a UAV status window, chat box, UAV health and status
updates, and the decision support window (Figure 3-7).

Figure 3-7: The MAUVE Decision Support Display
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Figure 3-8: The UAV Status Displays

3.3.1 UAV Status

The top left of the decision support display contains a status window (Figure 3-8) that
gives the operator low level, detailed information for each UAV. This window shows
each UAV’s current target, current status, position in latitude and longitude, course,
and weapons information. The current target field indicates which target the UAV
is currently scheduled to reach or which target it is currently loitering at, depending
on whether the UAV is enroute or loitering. The UAV’s current action field has a
description consistent with the color of the UAV on the map display (Figure 3-3) as
well as the icon on the right of the panel. The payload ready indicator always reads
either “1” or “0”. If it shows “1” instead of “0”, this means that the UAV has armed
for its current target, and is available to fire.

Speed and altitude are also shown in the status display, although they are not
directly controllable by operators. Each simulation is run approximately four times
faster than real time so an entire strike can take place over 30 minutes instead of
several hours as is commonplace in real life strikes, thus the speeds shown are not
representative of true UAV simulated velocities.

3.3.2 Chat Box

The bottom left of the decision support display holds a text-based communication
tool known as a chat box (Figure 3-9) that contains a time history of all human
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Figure 3-9: The Chat Box Window

interaction. The chat box is an established method of communications in current day
military command and control scenarios [6]. The use of a chat tool in the MAUVE
simulation adds ecologic and external validity as a secondary workload and situation
awareness tool [8].

The chat box window displays various notification messages that appear in re-
sponse to scenario events or actions taken by users, as well as periodic task-relevant
questions for operators to answer. A scroll bar on the right side of the chat box
allows users to see the complete time history of all messages for the current session.
The accuracy and time delay in responses to the online queries are logged to obtain
an objective measurement of situation awareness as well as secondary workload, or
spare capacity. Messages in red are from intelligence commanders and always require
an immediate re-planning response by the operator. An arrival of one of these high
priority messages is signaled by an audio alert to ensure operators are aware of these
events as they occur. Messages in bold black are questions about the current situa-
tion from a remotely located commander or superior officer. A response is required,
but doing so is a lower priority task than supervising the UAVs. Messages in plain
black are purely informational messages that do not require a response. Notifications
of acceptance or denial of TOT delay requests are a particularly important type of
informational message. If a TOT request is denied, a pop-up box appears on top of
the map display, an audio alert sounds, and a message stating the denial appears in
the chat box. If a TOT request is approved, the requested target’s TOT is moved
and a message stating the approval and new deadline for that target appears in the
chat box window.

3.3.3 UAV Health and Status Updates

The bottom right of the decision support display contains a notification window
similar in appearance to the chat box (Figure 3-10). The health and status updates
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Figure 3-10: The UAV Health and Status Updates Window

window separates human from system communications, and therefore only contains
messages from individual UAVs. This reduces clutter and confusion about the source
of incoming messages in the chat box window while still allowing the system to notify
the operator of important changes.

The system generates three types of messages in MAUVE: 1) emergency health
messages in red, which are accompanied by an auditory alert, 2) important status
messages in bold black, and 3) lower priority informational status messages in plain,
non-bold black. The emergency health messages are generated when a UAV is under
fire from a threat area. Higher priority status messages are automatically sent by
UAVs when they are ready to arm and fire, and the UAVs also send lower priority
messages informing the operator of their status during all stages of the arming and
firing process.

3.3.4 Decision Support

The decision support, represented by timelines or text-based table entries, always
appears in the top right of the decision support display (Figure 3-7). The manipula-
tion of the appearance and functionality of this window is the primary independent
variable of the experiment that will be discussed in Chapter 4. There are four pos-
sible forms of decision support in MAUVE that represent levels 1, 2, 4, and 6 on
Sheridan and Verplank’s levels of automation scale (Table 2.1), termed manual (M),
passive (P), active (A), and super active (S) respectively. This section will discuss
the functionality and rationale behind the design of each of these levels, but leave the
experimental design details for Section 4.5.
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Figure 3-11: Example High-Level ATO Document

The basic premise of the decision support is to simplify standard air tasking order
(ATO) data and combine it in a single interface with up-to-date mission planning
information. An ATO provides a schedule of events and required resources needed
over a period of hours and/or days for an offensive attack. Examples of information
contained in an ATO are which aircraft/UAVs are assigned to certain strikes, times
on targets, waypoints that must be flown on those strikes, and call signs to be used on
those missions. As air tasking orders often involve a large number of aircraft with mul-
tiple missions, they are complex and often hard to interpret, particularly under time
pressure. Despite this, operators are still expected to extract the information they
need in a timely manner. Figure 3-11 shows part of a typical paper-based ATO from
Operation Desert Storm that illustrates how difficult it is to extract relevant informa-
tion from these tasking documents. Once operators have obtained this information
and the mission commences, they must constantly compare the current and projected
mission status to the ATO and make adjustments to ensure compliance with mission
requirements. Combining these sources of information, which often include external
sources as well, is a cognitively demanding task that can easily overwhelm operators
under time pressure, particularly when supervising multiple vehicles at once. It is
for these reasons that the decision support in MAUVE is directed at simplifying this
process. While it is known that some level of decision support is required to more
effectively manage ATO information and scheduling, it is not clear what level of au-
tomation will provide the most improvement in overall schedule maintenance while
avoiding negative side-effects, such as a loss of situation awareness. Therefore, four
versions of the decision support were created and structured so that higher levels of
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Figure 3-12: Example Manual Decision Support Window

decision support expanded upon the features found in lower levels while still retaining
all of the functionality and basic information content from previous levels.

The fusion of basic ATO information with current mission planning information
resulted in a decision support structure with both hard and soft constraints. As a
mission plan is continually modified by operators in response to events unfolding in the
battlespace, it does not necessarily have to satisfy the ATO, so the decision support
was designed to compare the ATO to the current mission plan. Hard constraints
built into the decision support come from the ATO and include information such as
the set of targets for the current mission, the TOT windows or deadlines for each
of those targets, and whether or not each target requires BDA. ATO elements can
change occasionally during discrete re-planning events, but as far as the operators
are concerned, these are static elements not under their control. Soft constraints on
the mission can be directly manipulated by operators and include elements such as
the set of targets each UAV is due to visit, estimated time of arrival (ETA) at all
navigation points, and whether BDA will be performed at each individual target.
This information is shown separately for each UAV. The individual levels of decision
support will now be discussed in order of increasing level of automation.

Manual Level of Decision Support

The manual level of decision support (Figure 3-12, LOA 1) presents all required ATO
and mission planning information in a text-based table format. Under the “Current
Target” and “Upcoming Active Targets” headings, current TOT windows and ETAs
for up to the next four targets in queue are presented next to each other for easy
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Figure 3-13: Example Passive Decision Support Window

comparison. ETAs for arrival back at base in the “Mission Finish” column are listed
as well as the next waypoint or navigation point on the current route segment (if
applicable) under “Next Waypoint or Loiterpoint”. Further assistance is provided to
the operator through the “Next Expected Action” column, which tells the user what
they should be doing next and at what time, according to the ATO and mission plan
depicted on the map display. All of this information is updated dynamically to reflect
changing ATO requirements and mission planning changes initiated by the operator.
With some effort, all of this information could be mentally constructed to create
an accurate future schedule for each UAV. For example, in Figure 3-12 the decision
support for UAV 3 tells the following story: UAV 3 will arrive at waypoint WP-
3A at 12:05:48, before moving onto target T-12L and arriving at 12:07:41, almost
1.5 minutes before the start of that target’s firing window at 12:09:15. The next
two targets in the queue are T-4H and T-10H, and the UAV’s current ETAs at
those targets are both before the start of the applicable firing windows, so this UAV
currently is ahead of schedule. Assuming everything goes according to plan, the UAV
will arrive back at base at 12:26:10. This level of decision support is termed manual
because the automation does not take any decisions or actions for the human. The
ATO is simply organized in a digital format for easer reading as compared to a paper
version (Figure 3-11).

Passive Level of Decision Support

The passive LOA (Figure 3-13, LOA 2) takes all of the ATO and current mission
information contained in the manual level and transforms it into a horizontal timeline
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Figure 3-14: Representative Decision Support Visual Timeline

format color coded by action (Table 3.1). The major difference between this and the
manual level is that the entire schedule is visually integrated with both color and iconic
representation. These are display design interventions that reduce cognitive load by
allowing operators to directly perceive relationships instead of deriving them through
calculation, inference, and data transformation. Spatial relationships and actions are
understood better with visual representations as opposed to linguistic ones [37], thus
this passive display should improve performance over that of the manual display.

The visual timelines are relative and represent time up to 15 minutes into the fu-
ture. Figure 3-14 illustrates the standard elements of a representative visual timeline.
As can be seen from the diagram, target ETAs are represented by black rectangles
on the bottom of each timeline, and waypoint, loiter point and base arrival times are
marked by black triangles on the top of each timeline. ATO elements such as target
TOT windows, arming windows, and times when BDA is required are represented by
red, yellow and brown blocks of time at the appropriate times.

With this visual representation, recognizing problems with the current mission
plan becomes a process of comparing the relative location of display elements instead
of specific times to one another. The visual task is much easier and faster to perform
because it only involves perception, as opposed to the cognition required to compare
the ETA and TOT numbers to each other. An example of how users recognize
problems with the mission plan using this visual timeline is as follows: In Figure
3-13, the ETA marker for target T-5H (assigned to UAV 4) is entirely to the right
of that target’s firing window. This means that UAV 4’s arrival time to T-5H is
after the deadline for that target, and upon seeing this, operators can easily tell that
the UAV will miss that target unless they initiate some type of re-planning action.
Another emergent feature of this display is that if the color of the UAV icon to the
immediate left of the timeline is not the same color as the current timeline block,
the operator can immediately tell that the UAV needs attention, as this means that
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Figure 3-15: Example Active Decision Support Window

the UAV is missing a target deadline specified by the ATO. This level of decision
support is termed passive because the automation is not performing any tasks except
transforming the basic ATO and mission planning information into a graphical format.

Active Level of Decision Support

The active LOA (Figure 3-15, LOA 4) uses the same horizontal timeline format as
the passive automation level, but provides additional computer aid to the user. In
this version of the decision support, an algorithm searches for periods of time in the
schedule that will likely cause high workload for the operator, and it directs the op-
erator’s attention towards them. The computer identifies high workload areas, or
“bottlenecks” as periods of time during which multiple UAVs are scheduled to be
simultaneously executing mission critical actions, defined as arming, firing, or per-
forming BDA. The automation draws attention to these areas of concern by a reverse
shading technique, in which the “bottlenecks” are highlighted while the rest of the
timeline’s colors are muted into the background, but still visible. As no information is

Figure 3-16: Automation Recommendation for a TOT Delay Request
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hidden, only made less salient, the operator’s attention is directed to the appropriate
areas of the schedule while allowing them to maintain SA for the rest of the mission.
This technique also does not require any drilldown to subsequent screens to solve
the problem, so it permits operators to make local changes to alleviate workload and
immediately see their effect on the global mission plans of all UAVs.

In addition to identifying areas of potential high workload, the computer also
recommends a course of action to spread out the operator’s workload through the de-
lay of particular targets’ deadlines, or TOTs. Computer recommendations appear in
gray boxes to the right of each UAV’s timeline that they pertain to (Figure 3-16). It
should be noted that while the automation makes locally optimal recommendations,
the algorithm is not globally optimal. In other words, following the computer’s rec-
ommendation to relieve a high workload area always removes that particular schedule
conflict, but sometimes it creates another in the process.

Schedule changes to relieve areas of high workload are requested by the operator
if they so desire (Section 3.2.3). The active level of decision support gives operators
several options: 1) they can acknowledge a high workload area but take no action,
2) they can follow the recommendation to relieve the projected high workload area
by shifting a TOT, or 3) they can make other mission planning changes to ensure
the high workload area does not occur in the first place, such as removing a target
from a UAV’s mission plan. If all high workload areas are taken care of by the
operator, full color is restored to the timeline and the automation looks and acts like
the passive level of automation until such time that a schedule change creates a new
high workload area.

An approved TOT delay request causes the deadline for the relevant target to
automatically be moved back in one of the following ways: 1) 30 seconds, or 2) far
enough back to prevent that target’s arming, firing or BDA windows from occurring
in the same time period as any other overlapping targets. For example, if a target has
a firing window that overlaps with two other high priority targets assigned to other
UAVs, an approved TOT request for that target would move it back 45 seconds or
more to avoid the start of that target’s arming window overlapping with the other
targets’ BDA windows. In this way, TOT requests occasionally move a target’s TOT
window back a minute or more. The algorithm also ensures that deadline moves do
not create conflicts with other targets assigned to the same UAV.

The purpose of this level of automation is to help operators to identify time
periods of potential concern where they could be overwhelmed farther in advance,
so that they can better plan to avoid them, or at least be better prepared to handle
them. This level of decision support is termed active because the automation narrows
down a set of possible solution alternatives for high workload problems to a single
recommendation. However, these recommendations are only suggestions and the
computer does not implement them.

Super Active Level of Decision Support

The super active LOA (Figure 3-17, LOA 6) also builds upon the passive level vi-
sual timeline, but instead of making recommendations to the operator as in the active
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Figure 3-17: Example Super Active Decision Support Window

LOA, a management-by-exception approach is taken whereby the computer automat-
ically executes the arming and firing actions for all UAVs at each target, when the
rules of engagement for such actions are met (Appendix A). For example, in order to
arm, a UAV has to be located at the particular target it is due to fire on, and the
scenario time within the arming or firing windows for that target. It should be noted
that there are no special rules of engagement for the super active level of automation;
the computer follows the same rules for humans in other LOAs. In this way, respon-
sibility for executing routine arming and firing actions is removed from the operator,
rendering the computer recommendations of the active level unnecessary.

However, the operator is still responsible for determining if the arming and firing
actions are appropriate, and for re-planning actions and manipulating routes to ensure
the UAVs arrive at the correct targets on time. Up to 30 seconds in advance before
every arming and firing action, exception boxes (Figure 3-18) appear to the right of
the timeline that allow the operator to veto these actions. These exception boxes
show which target the UAV is due to fire on, which action the UAV is preparing

Figure 3-18: An Arming Exception Box Under Super Active Automation
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to take, when it will take it, and it contains a countdown timer that indicates how
many seconds from current time that the action will be executed. The color of the
box redundantly indicates which action the UAV is preparing to perform: red for
firing and yellow for arming. This color also matches the next timeline block in the
relevant timeline. This level of decision support is termed super active because the
automation is performing all of the mission critical execution actions for the user.

Summary

Figure 3-19 shows the progression of the decision support window as the level of
automation selected in the MAUVE program moves from manual to super active.

(a) Manual (b) Passive

(c) Active (d) Super Active

Figure 3-19: The Four Possible Levels of Decision Support in MAUVE
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Chapter 4

Hypotheses and Methods

The first part of this chapter presents hypotheses where predictions are made for
trends in system performance for each of the four levels of decision support in the
MAUVE simulation program and interface described in Chapter 3. The last half of
the chapter provides the details of an experiment conducted with MAUVE evaluating
different levels of automation in the context of both human and system performance.
Major areas of the experiment that are outlined in this chapter are the experimental
objectives, apparatus, participants, and the experimental design.

4.1 System Performance Hypotheses

The discussion regarding the effects of automation on wait times in Chapter 2 can
now be extended to make predictions about the specific levels of decision support in
the MAUVE interface. This section describes the features of the MAUVE simulation
and interface that have an impact on wait times, and makes wait time predictions
based on these features and the theory introduced in Chapter 2.

4.1.1 Interaction Wait Time (WTI)

Interaction time in MAUVE is likely to be significantly influenced by the timeline
introduced for higher levels of decision support, as it provides a visual, color-coded
representation of critical temporal information needed to properly task the UAVs.
Vertical stacking of the timelines and status display make it possible to observe all
vehicle actions simultaneously. As the operator re-plans, the timeline automatically
updates thus allowing problem spaces to be more easily explored. All of this in-
formation is available under manual automation, but it cannot be obtained without
substantial cross-checking of table entries, and the table format does not facilitate
schedule comparisons across different vehicles. Therefore, due to the increased visi-
bility and ease of determining temporal relationships between different ATO elements
on the visual timeline, WTI should be lower for the passive, active and super active
levels of automation in comparison to the manual level.

As the active level of automation further guides vehicle selection and planning
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(components of WTI, see Section 2.3.2) by drawing attention to predicted high work-
load blocks of time and making recommendations for specific UAVs to alleviate work-
load bottlenecks, the total WTI for active automation should be less than the passive
level. Under super active automation, planning times for expected events such as
arming and firing will be decreased to near zero, as the UAVs autonomously perform
all major tasks but re-planning for the human. As a consequence of the high level of
automation, the vehicle selection decision is also taken away from the human, thus
decreasing subtask selection to nearly zero as well. Therefore, in combination with
the benefits of the visual timeline, super active should have the lowest total WTI
of any of the levels of automation. Combining all of these predictions together, this
means that there should be a decreasing trend of WTI with increasing level of au-
tomation. Total WTI should increase with higher levels of re-planning, as a higher
number of events occurring in a scenario of similar difficulty means that there will be
more opportunities for WTI to accumulate.

4.1.2 Wait Time in the Queue (WTQ)

As outlined in chapter 2, WTQ depends heavily on WTI, which is expected to decrease
with increasing levels of automation in MAUVE. Therefore, WTQ should follow the
same decreasing trend as level of automation increases. WTQ should also increase
with greater levels of workload and uncertainty because again, WTQ follows the
same trends as WTI, but also because at higher levels of re-planning, events occur
at a faster pace. Therefore, there should be a greater number of opportunities for
queues of tasks to occur.

4.1.3 Situation Awareness Wait Time (WTSA)

As stated in Section 2.3.2, the super active level of automation should eliminate any
wait time due to the loss of SA for planned events, as under this level the system
autonomously carries out the existing mission plan. When unexpected events occur,
operators may have low levels of SA due to boredom or complacency, and therefore
they may incur WTSA by not noticing that the mission plan needs adjustment or
that a UAV has stopped progressing along the mission plan and needs attention. In
contrast, under the manual level of automation in MAUVE, the operator is responsible
for both execution and re-planning. With very little automation assistance, these
dual responsibilities increase workload, which could induce low levels of operator SA.
As SA decreases, there is no guarantee that wait times will occur, only that the
probability of WTSA occurrence is more likely. However, given the greater number
of opportunities for this human error to occur under manual decision support, it
should have the largest total amount situation awareness wait times amongst all
LOAs, while the super active level should have comparable WTSA. The active and
passive levels should have the lowest accumulated WTSAs, as the moderate levels of
workload (as compared to manual and super active) provided by these LOAs should
cause operators to have an optimum level of SA. WTSA should increase with higher
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Figure 4-1: Predicted Trends for Wait Time Components Across MAUVE LOAs

levels of re-planning, as the additional workload placed on operators due to these
events should induce lower SA.

4.1.4 Summary

In general, increasing levels of decision support in MAUVE should result in lower
aggregate levels of WTI and WTQ, while WTSA will be lower in the passive and
active modes (Figure 4-1). It is not clear which of these components dominates
total wait time, or even if a single component will dominate across all factor levels.
Increasing workload and uncertainty introduced through higher levels of re-planning
will likely increase WTI and WTQ, while WTSA may be contextually dependent.

4.2 Experiment Overview

In order to address the hypotheses from Section 4.1, an experiment with the MAUVE
simulation interface (Chapter 3) was conducted. The goal of the experiment was to
explore how human decision making in a time-critical, HSC multiple task management
context affected both human and system performance, and how different levels of
automation interacted with these measures. Through this experiment, the wait time
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predictions as a function of level of automation in Chapter 2 could be validated and
the impact of system performance on human performance and vice versa quantified.

4.3 Apparatus

Training and testing was conducted on a four screen system called the multi-modal
workstation (MMWS) [28], originally designed by the Space and Naval Warfare
(SPAWAR) Systems Center as a test prototype to aid the development of human-
computer interface recommendations for future Navy C2 systems (Figure 4-2). The
top three screens used were 21” and were run at 1280 x 1024 pixels, 16-bit color reso-
lution, while the bottom screen was 15” and was run at 1024 x 768 pixels, 32-bit color
resolution. The workstation was a Dell Optiplex GX280 with a Pentium 4 processor
and an Appian Jeronimo Pro 4-Port graphics card. Subjects interacted with the sim-
ulation via a Logitech MX500 cordless mouse and a generic numeric key pad. This is
a typical set-up for the MMWS as described by Osga et al [28]. During testing, all
mouse clicks and both message box histories, including incoming and outgoing mes-
sages, were recorded by software. In addition, screenshots of both simulation screens
were taken approximately every two minutes, all four UAV locations were recorded
every ten seconds, and a whenever a UAV’s status changed, the time and change
made were noted in the data file.

The center top and top right screens contained the simulation navigation and
decision support windows, respectively (Figures 3-2 and 3-7). The top left screen
contained subjects’ objectives in rank priority order for the scenarios (Section 4.5.3,
also seen in Appendix B), and was static throughout the experiment, while the bottom

Figure 4-2: The Experimental Set-Up on the MMWS
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screen contained the color coding for UAV actions in the simulation as a reference
(Table 3.1, also seen in Appendix B). This information was provided during testing
because pre-test feedback indicated it was a useful reminder, and to ensure that
participants were not required to memorize large amounts of information.

4.4 Participants

A total of 12 subjects took part in this experiment, 10 men and 2 women. Subjects
were recruited based on whether they had UAV, military and/or pilot experience.
The subject population consisted of a combination of students, both undergraduates
and graduates, as well as those from the local reserve officer training corps (ROTC)
and active duty military personnel. All were paid $10 an hour for their participation.
In addition, a $50 incentive prize was offered for the best performer in the experiment.

The age range of participants was 20 - 42 years with an average age of 26.3 years.
Nine participants were members of the ROTC or active duty USAF officers, and
included seven 2nd Lieutenants, a Major and a Lieutenant Colonel. Correspondingly,
the number of years of military service ranged from 1-20 years, with three being the
median. While none had UAV experience beyond limited use of standard commercial
off-the-shelf remote controlled planes, nine participants had piloting experience. The
average number of flight hours among this group was 120. See Appendix C for a
summary of the study demographics.

4.5 Experimental Design

4.5.1 Independent Variables

Two independent variables were of interest in this experiment: level of decision sup-
port, and level of re-planning. The level of decision support was a between-subjects
variable and the level of re-planning was a within-subjects repeated variable, so sub-
jects were randomly assigned to a LOA factor level but experienced all re-planning
conditions.

Level of Decision Support

As discussed previously in Chapter 3, to assess the impact of increasing levels of
automation on human and system performance, various forms of decision support were
provided to subjects that represented levels 1, 2, 4, and 6 on Sheridan and Verplank’s
levels of automation scale (Table 2.1), termed manual (M), passive (P), active (A), and
super active (S) respectively. The main differentiating features between the different
levels were:

• Manual - The ATO and mission planning information was presented in an
organized, digital table format for each UAV.
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• Passive - The ATO and mission planning information was transformed into a
visual timeline format for each UAV.

• Active - The passive visual timeline was used to convey ATO and mission
planning information. Additionally, the computer identified areas of potential
high workload on the timeline for subjects and made recommendations to relieve
them.

• Super Active - The passive visual timeline was used to convey ATO and
mission planning information. The computer took over automatic execution of
all arming and firing actions, and provided operators with the ability to stop
an automated action within 30 seconds of notification.

This was the primary independent variable for this experiment. Decision support
representing Sheridan and Verplank levels of 3 and 5 were omitted in this experiment
because of their similarity to the active (LOA 4) and super active (LOA 6) levels.
For more discussion and details on the various interface layouts and functionality, see
Section 3.3.4.

Level of Re-planning

The secondary independent variable was the level of re-planning, either low or high,
which represents operational tempo. It has been demonstrated that in supervisory
control of multiple autonomous vehicles, increased operational tempo can be a sig-
nificant contributor to degraded human performance [7]. Schedule re-planning was
required if any of the following events occurred:

• An emergent target appeared in the battlespace

• A target was assigned to a different UAV strike mission

• An emergent threat area appeared in the battlespace

• A threat area became inactive

• A battle damage assessment requirement was added to an existing target

• A battle damage assessment requirement was removed from an existing target

• A system failure occurred, requiring a UAV to return to base unexpectedly

Low and high levels of schedule re-planning were investigated. The low re-planning
condition contained 7 re-planning events, while the high re-planning condition con-
tained 13. Groups of re-planning events were interspersed at approximately three
minute intervals, but under the low re-planning level these groups only ever consisted
of a single event. Under high re-planning, some groups were composed of two or three
re-plans occurring within 60 seconds of each other.

62



4.5.2 Dependent Variables

Several dependent variables were used in this experiment: a performance score, wait
times as discussed in Section 2.3.1, situation awareness, critical events, and sec-
ondary/subjective workload measures.

Performance Score

In order to adequately measure an overall level of performance for a given test session,
a performance score was created that incorporated how well subjects met the numer-
ous objectives for that session. The performance score was a product of the targets
correctly destroyed, including their priority and difficulty level, and number of times
BDA was correctly performed. The ATO specified that some targets in the scenarios
should not be destroyed, and so operators were significantly penalized for erroneously
firing on these targets. Penalties were also assessed for hits taken by UAVs in threat
areas and for having UAVs return to base beyond the mission time limit. A score of
zero on this rating scale indicated no objectives had been met in the session, while a
perfect score of 1000 meant that all mission objectives were met. For complete details
on the scoring formula and rationale behind its development, see Appendix D.

Wait Times

As outlined in Section 2.3.1, overall system wait time is composed of interaction
wait time (WTI), wait time in the queue (WTQ), and situation awareness wait time
(WTSA). In the context of the MAUVE simulation, system wait times were accumu-
lated whenever one or more vehicles were in a degraded state such that their activities
were counter to or not advancing the mission plan. This degraded performance could
have taken the following forms in the simulation:

• Unnecessary loiter time at a target, such as if a UAV was loitering at an active
target, but failed to fire before the end of the firing window, or if a target was
removed from the mission plan while the UAV was loitering at that target, and
any time spent loitering at a target while available to fire without actually doing
so. In all cases, the UAV continued to loiter at the target indefinitely until the
operator issued it a subsequent command.

• Any time from the beginning of any arming window until the UAV began the
actual process of arming. For missed targets, a full 30 seconds (10 second
arming window plus 20 second firing window) of wait time was assessed, as
during this time, people on the ground expected a weapon on target and it did
not happen. In this case, the wait times incurred can be thought of as times the
broader system was affected by the UAVs degraded performance. Additionally,
if a UAV missed performing BDA on a target it was supposed to, a 45 second
wait time was added to that UAV’s total.

• Any time the UAV was performing incorrect actions, such as arming and firing
on a target removed from the mission plan by the ATO or performing BDA on
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unnecessary targets. This also included time when UAVs were flying without
a specific purpose or goal in mind, such as when subjects were confused about
which target to fly to next and had the UAV moving in circles, back on itself,
etc.

• Time spent in threat areas, until the operator paid attention to the UAV and
planned a (reasonably) optimal path out of the threat area.

• The time period from when a return to base command was issued for a UAV
until the order was followed. This was a wait time because a RTB command
represented a system failure and the UAV could no longer perform its required
tasks for the mission.

From the recording of control activations, UAV locations, screenshots, and ob-
server notes taken during trials, an accurate “story” of the test sessions could be
re-constructed in later data analysis. It was assumed that operator attention was
always focused on the UAV they currently had selected, as this was required to per-
form any mission planning or execution actions for that UAV. Wait times began with
individual events that occurred during the test sessions, such as a UAV entering a
threat area or the mission time reaching the start of a target’s TOT window. Wait
times ended with discrete actions or button presses taken by the user that restored
a UAV’s level of performance to an acceptable level, such as planning a path for a
UAV out of a threat area, or firing on an active target. From this, each of the wait
times incurred was classified into WTI, WTQ or WTSA. In general, a wait time was
classified as WTI if the UAV was receiving operator attention, WTQ if the operator
was busy with another UAV and transitioned their attention to the relevant UAV
quickly after finishing that task, and WTSA otherwise.

Situation Awareness

As discussed in Chapter 2, situation awareness (SA) is generally defined as the per-
ception of the elements in the environment within a volume of time and space, and
the comprehension of their meaning and the projection of their status in the near
future. SA has three distinct levels, which are: 1) the perception of the elements in
the environment, 2) the comprehension of the current situation, and 3) the projection
of future status [13, 14].

Situation awareness in MAUVE was captured both objectively and subjectively.
The objective measure was obtained by how accurately subjects answered 12 online
questions asked at approximately two minute intervals in the chat box window. In
order to avoid confounding the responses with typing ability, all questions were de-
signed to have very short numerical answers a maximum of four keystrokes in length.
Examples of the types of information that were required by these communications
are as follows:

• Which UAVs will arrive at their next navigation point by 12:05:00?
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• If UAV 1 was issued a RTB command, which of its currently assigned active
targets could be most easily re-assigned and destroyed by UAV 4?

• How many targets have TOTs starting in the next 5 minutes?

• According to the current mission plan, how many UAVs will arrive at Base
within 2 minutes of UAV 4’s arrival?

• Which future high priority target would provide the greatest decrease in a single
UAV’s travel time, if removed from the ATO?

Six questions per session were designed to assess level 2 SA and the remaining six
level 3 SA. A question was considered a level 2 SA type of question if the answer could
be directly perceived from the decision support or map display, either right away or
with a minor amount of data synthesis, while level 3 SA types of questions required
greater amounts of data synthesis and projection of current system states to future
states.

The answers to each question were graded on a 0-5 scale for correctness, with zero
points received if no response was received and 5 if the correct answer was given.
Intermediate scores of 1-4 were assigned based on the degree of correctness of the
answer given, and each question was also weighted on a scale of 1-5 to take into
account difficulty. The question weighting was based upon how many steps were
required to solve the problem, mediated by the context in which the question was
asked. Questions asked during periods of high workload were more difficult, and
sometimes question difficulty was influenced by scenario events. For example, the
question “How many targets have TOTs starting in the next 5 minutes?” became
harder to answer if scenario events were manipulated by a subject so that a target’s
TOT deadline expired soon after the question was asked. Typically this was an easy
question because it could be directly perceived from the decision support, but the
decision support did not show deadlines in the past. In this case, subjects coming
back to answer the question at a later time had to read the decision support as well as
remember they destroyed or missed a target in the time since the question was asked.
Each response to a question was multiplied by the weighting for that question and
an aggregate score obtained before being divided by the total possible score. In this
way, an average SA score on a scale of 0-5 was obtained. The questions asked were
equally divided between those testing level 2 SA (data comprehension/synthesis) and
level 3 SA (projection) and SA scores for these categories were separately examined.

A subjective SA scale constructed from expert observer ratings was also con-
structed to test the validity of the objective SA measure, as subjective SA scales
based upon expert observer ratings have been found to be a reliable and valid mea-
sure way to measure SA [2]. This scale was based upon expert opinion on what were
judged to be the four most salient indicators of SA in the test sessions:

1. The number of entries into threat areas where the UAV received three or more
hits and the operator did not intervene to minimize further damage to that
UAV.
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2. The amount of system wait time at targets due to loss of situation awareness.

3. The number of targets missed due to lack of situation awareness.

4. The percentage of re-planning events successfully completed.

The first two indicators measured level 2 SA (comprehension), as a UAV loitering
unnecessarily at a target or a UAV traveling through a threat area could be perceived
directly from the map display. The second two indicators measured level 3 SA (future
projection), as a failure to successfully complete a re-plan or a missing a target due
to a lack of SA meant that the operator had not properly executed, modified and
projected the mission plan in response to scenario events. Each test session was
assigned four individual scores, one for each indicator, and the average of these ratings
was the subjective SA score for that test session. A score for Level 2 SA was obtained
by averaging the ratings for indicators 1 and 2, while a score for Level 3 SA was
obtained similarly with indicators 3 and 4. For more details on the development of
the subjective SA scale used in this study, see Appendix E.

Critical Events

An error of commission occurs because a wrong action is taken, in contrast to an error
of omission which occurs as a result of not performing an action. Operators could
commit errors of commission in the test sessions by erroneously firing upon targets
that the ATO had previously specified should not be destroyed. These were considered
important and critical events because errors of commission in military applications
often have potentially serious consequences, such as firing on civilians or friendly
forces. As an example, the US Army’s Patriot missile system, often run in highly
automated modes corresponding to LOA 6 (Table 2.1), is particularly susceptible to
operators committing errors of commission. In the most recent accident with this
system, during the 2004 war with Iraq, a Patriot missile system engaged in fratricide,
shooting down a British Tornado and an American F/A-18, killing three. The number
of times that critical firing events occurred during test sessions was recorded for
subsequent data analysis.

Workload Measures

The use of response times to the online chat questions as a measure of secondary work-
load has been shown to be an effective technique [7], and was incorporated into this
research. To measure subjective workload, after the completion of each test session,
subjects filled out a modified NASA Task Load Index (TLX) subjective workload
rating survey. The NASA TLX rating scale has been tested in numerous experimen-
tal conditions and has been found to be a reliable indicator of subjective workload
[19]. The standard NASA TLX procedure computes a single workload score from
subjects’ weighted ratings on a 1-20 scale along six dimensions, which are mental de-
mand, physical demand, temporal demand, effort, performance, and frustration. As
the experimental task required no physical demand, subjects were told to ignore parts
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of the survey asking about that dimension and the subsequently modified subjective
workload scores were based upon the five remaining dimensions.

4.5.3 Test Scenario Design

Objectives

Subjects had two main objectives in this experiment: 1) To guide each UAV’s actions
so that together, all UAVs under their supervision properly executed the required mis-
sions of the ATO, which could change over time, and 2) To answer periodic questions
about the situation from commanders through the instant messaging tool. Super-
vision of the UAVs was broken down into the following prioritized sub-tasks, from
highest priority to lowest:

1. Returning the UAVs to base (RTB) within the time limit for the mission.

2. Complying with changing mission requirements, which were relayed by periodic
intelligence messages, such as a RTB order earlier than the mission time limit.

3. Destroying all targets before their time on target (TOT) window ended.

4. Performing battle damage assessment (BDA) on specified targets after destroy-
ing them.

5. Avoiding damage from enemies by navigating around and out of threat areas.

6. Answering communications.

These sets of objectives often conflicted with one another. In these cases, subjects
were required to perform the actions that had the highest priority at the expense of
lower priority objectives.

Test Scenarios

Two test scenarios were designed for this experiment. The only significant differ-
ence between them was the number of re-planning events that occurred, as described
in Section 4.5.1. Base difficulty before taking into account re-planning events was
approximately the same, and was controlled by having the same number (19) and
priority of targets (6 low, 7 medium, 6 high) to be destroyed by the UAVs in the
same amount of time (30 minutes). In both sessions, UAVs initially launched with a
pre-planned validated mission plan in which no deadlines would be missed, so long
as no unexpected events occurred and the operator executed the required actions at
the appropriate times. With this initial mission plan, operators had a specified slack
time of 30 seconds before every target, which was kept constant across scenarios and
used to control difficulty. Thus, if operators followed the mission plan exactly and
no unexpected events occurred, all the UAVs would always arrive 30 seconds before
the beginning of the arming window at each target. Initial routings for the UAVs
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(a) Low (b) High

Figure 4-3: Test Session Maps

were mirrored and rotated but otherwise kept the same between sessions. Target
names were changed and initial target deadlines varied slightly to give subjects the
perception that they were seeing different situations. Some changes to routings were
necessary to maintain the 30 second slack time rule in order to accommodate different
re-planning events across sessions. Figure 4-3 shows how the map display looked to
subjects at the beginning of the high and low re-planning scenarios, respectively.

4.5.4 Testing Procedure

Before arriving at their test session, subjects were sent a pre-experiment tutorial in
order to familiarize them with the functionality and usage of the MAUVE interface.
Individual customized tutorials for each level of automation were created so that
subjects were exposed only to the particular version of the decision support they
would experience. Upon arrival, subjects filled out a consent form and a demographic
survey before reading a short instruction sheet that detailed their objectives in the
scenarios, example chat box questions, and specific rules of engagement (as detailed
by Appendix A).

All subjects then received between 90 and 120 minutes of training until they
achieved a basic level of proficiency in monitoring the UAVs, redirecting them as
necessary, executing commands such as firing and arming of payload at appropriate
times, and responding to online instant messages. A written testing script was fol-
lowed and the same experimenter trained all subjects to ensure there was consistency
in this training, which was carefully structured into three practice scenarios. The first
scenario served to familiarize participants with the basic display elements, rules of
engagement, and taught subjects basic mission execution actions. The second prac-
tice scenario focused on teaching subjects how to perform mission planning actions,
particularly in response to re-planning events. During this scenario, subjects solved
every possible type of re-planning event. The third practice scenario was a hands-off
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15-minute test during which subjects were able to get a feel for the pacing and tim-
ing of the test scenarios. This was also the first session during which subjects were
required to answer questions through the chat box while supervising the UAVs. The
only differences between the final standard training session and the test sessions were
its shorter length and marginally easier difficulty level. After scenario completion,
subjects were fully debriefed on their mistakes, and any remaining questions they
had were answered. Based upon pre-testing, subjects were required to achieve a min-
imum pre-determined level of performance to move onto the actual test sessions. In
only two cases of 12, an additional practice scenario was required, which was similar
in content to the previous practice session. Both subjects that received extended
training improved enough to meet the established minimum level of proficiency.

Following training, participants tested on two consecutive 30 minute sessions, one
with a higher number of re-planning events than the other. The order in which
the conditions were presented to subjects was randomized and counter-balanced to
prevent a possible order effect. The experimenter observed and took notes on how
subjects responded to re-planning events answered questions. Overall behaviors or
comments were also recorded, particularly in instances where an unusual situation
arose that would have been difficult to interpret from the raw objective data by
itself. For an example of typical trial progression, see Appendix F. This Appendix
shows both MAUVE displays at approximately two minute intervals over the course
of an entire test session. At the conclusion of each test session, subjects filled out an
electronic NASA TLX survey, and after the both sessions were concluded, feedback
on the study experience and interface was solicited.
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Chapter 5

Results

This chapter presents statistical findings from the experiment described in Chapter
4, which had two independent variables: level of automation and level of re-planning.
The dependent variables examined include the performance score, number of TOT de-
lay requests made, proportion of TOT delay requests approved, wait times, situation
awareness, critical events, and workload metrics.

5.1 Overview

As this experiment examined two independent factors, four levels of automation
(between-subjects) and two levels of re-planning (within-subjects), the general lin-
ear statistical model used for the majority of the analysis in this chapter is a 2x4(3)
repeated measures linear mixed model. Three subjects were nested within each au-
tomation level, and both independent factors were fixed while subjects were a random
factor. Age was used as a covariate in all analyses, and for all reported results α =
0.05 unless stated otherwise. Post-hoc comparisons between individual factor lev-
els were done using equal or unequal variance (depending on the significance of the
Levene and/or Brown Forsythe tests), small population mean t-tests with Bonferroni
correction. For data sets such as counts that violated the linear mixed model’s nor-
mality assumption even under standard transformations, a non-parametric analysis
was conducted.

5.2 Overall Performance Measures

5.2.1 Performance Score

As outlined in Section 4.5.2 and Appendix D, the performance score was an aggregate
measure of overall human performance that incorporated the number and priority of
targets correctly destroyed, number of times BDA was correctly performed, and any
penalties from threat hits, late arrivals to base, or targets erroneously destroyed. Fig-
ure 5-1 shows the average performance scores for each experimental condition. Level
of re-planning was significant (F(1,9.9) = 19.40, p = 0.001) while level of automation
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Figure 5-1: Performance Scores Across Levels of Automation and Re-planning

was marginally significant (F(3,10.8) = 3.04, p = 0.076). There was no significant
interaction between the factors.

Further testing revealed that the super active level of automation had significantly
higher performance than the active level under the high re-planning condition (p
= 0.032), while the manual and passive levels did not. However, the manual and
passive levels also did not perform significantly worse than the super active level under
the same conditions, thus of the four LOAs, active automation caused significantly
degraded performance under high re-planning. There was no significant difference
between the automation levels under low re-planning.

5.2.2 Time on Target Delays

Based upon observed behaviors in test sessions as well as the statistical results from
the performance score analysis, a significant driver of human performance was found
to be operators’ use of the “TOT Delay” function. Through requesting TOT delays,
operators could manipulate target deadlines to spread out their workload and/or
make deadlines they otherwise would have missed due to inadequate planning and
execution at some earlier time in the scenario (Section 3.2.3).

Counts of TOT delays requested and granted were both examined in non-parametric
analyses. A Wilcoxon Signed Rank Test between levels of re-planning found that the
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Figure 5-2: TOT Delays Requested Across Levels of Automation and Re-planning

number of TOT requests made was significantly lower in the low re-planning condi-
tion (p = 0.059) and not significant for number of requests granted (p = 0.167). A
Kruskal-Wallis test showed that the number of TOT delays requested was marginally
significant between automation levels (p = 0.096). Inspection of the ranked data
and Figure 5-2 reveals that the difference between automation levels in this case was
driven by a lower number of TOT delay requests in the manual level of automation
(under low levels of re-planning), and a higher number of TOT requests in the active
level. Wilcoxon Rank Sum Tests comparing the manual and active levels of automa-
tion to the other levels were performed to investigate these hypotheses. This analysis
revealed the manual level had significantly lower numbers of TOT requests than the
passive level (p = 0.015), with marginal significance in comparison to the active level
(p = 0.06). Comparison to the super active level revealed no significant difference in
number of TOT requests made. A median chi-square test showed that the number of
TOT requests made under the active level was significantly higher than other levels
of automation (p = 0.065).

In addition to examining TOT requests, proportion of requested TOT delays that
were approved were also looked at since a higher proportion of approved TOT delays
meant that an operator tended to request their TOT delays farther in advance. To
investigate if the proportion of approved TOT requests varied across experimental
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Figure 5-3: Proportion of Approved TOT Delay Requests Per Level of Automation

conditions, a linear mixed model analysis was conducted, again with age as a covari-
ant. Neither experimental factor was found to be significant (level of automation,
F(3, 14.8) = 0.60, p = 0.623; level of re-planning, F(1,14.7) = 0.204, p = 0.658),
but Figure 5-3 shows that there was a trend of increasing proportion of TOT delays
approved as the automation level increased.

In summary, the main results from this section are the following:

• The number of TOT requests made were significantly higher for the high re-
planning condition than for the low, and significantly higher for the active level
than for all other automation levels.

• The proportion of TOT delay requests approved did not show significance but
there is a non-significant trend of increasing proportion of TOT delays approved
with automation level.

5.3 Wait Times

As discussed in Chapter 2, increases in system wait times are hypothesized to be a
major source of performance decrements in time critical situations such as multiple
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UAV supervisory control. System wait time occurred whenever any of the UAVs
was in a degraded state (as defined in Section 4.5.2) and needed attention from the
operator. Overall system wait time (WTT) consists of interaction wait time (WTI),
wait time in the queue (WTQ), and situation awareness wait time (WTSA). It should
be noted that the sum of WTI, WTQ, and WTSA does not equal WTT if there is ever
a period of time when two different types of wait times are occurring simultaneously
(on a minimum of two vehicles), as the total system wait time metric does not double
count these overlapping times. Wait times are a measure of system performance.

5.3.1 Total System Wait Time (WTT)

Total system wait time was computed as the aggregate time any part of the system was
incurring wait time due to human-vehicle interaction. With this measure, it did not
matter if a single UAV was waiting or all four, or the type of accumulating wait time,
just that some part of the system required attention from the operator to improve its
performance to an acceptable level. Total system wait time was significant for level of
re-planning (F(1,14.9) = 27.63, p < 0.001) and level of automation (F(3,14.9) = 4.631,
p = 0.018). As the data was not normally distributed, a logarithmic transformation
of the data was required to meet linear mixed model assumptions. There were no
significant interactions.

Figure 5-4: WTT Across Levels of Automation and Re-planning
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Post-hoc comparison between automation levels revealed that total system wait
time was significantly less under the super active level of automation as compared to
every other level (S vs. M, p = 0.022; S vs. A, p = 0.053; S vs. P, p = 0.078). From
Figure 5-4, it can be seen that total system wait time for the active level under high
re-planning conditions had the highest overall wait times. This data point was found
to be significantly higher than under super active (p = 0.027) but no different from
the passive or manual levels.

5.3.2 Interaction Wait Time (WTI)

In the context of this experiment, interaction wait time was the subset of total human
interaction time with the UAVs that took place while the vehicle under study was
in a degraded state. WTI includes both the time operators spent actually entering
commands to UAVs as well as the actual time spent planning the process. Examples
of this are the time an operator spent planning a UAV’s path out of a threat area,
or the time a UAV spent loitering at a target, ready to fire before the operator
communicated a firing command to it.

Figure 5-5 shows the marginal means for each of the experimental conditions.
Interaction wait time was highly significant for level of automation (F(3,13) = 8.08,
p = 0.003), but not significant for level of re-planning (F(1,12.1) = 2.13, p = 0.170).

Figure 5-5: WTI Across Levels of Automation and Re-planning
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A logarithmic transformation of the data was required to meet equal variance and
normality assumptions, and there were no significant interactions between the factor
levels. Post-hoc comparisons between automation levels showed that interaction wait
time was significantly less for the super active and active levels than the manual and
passive levels (S vs. M, p = 0.001; S vs. P, p = 0.004; A vs. M, p = 0.002; A vs. P,
p = 0.006). From these results, two homogeneous subsets of automation levels were
found: super active/active and passive/manual, meaning that super active and active
LOAs produced statistically the same wait times, as did passive and manual.

5.3.3 Wait Time in the Queue (WTQ)

Wait time spent in the queue occurred in this experiment whenever two or more
vehicles required operator attention simultaneously, and the operator moved immedi-
ately to the vehicle(s) waiting in the queue after finishing a task with another vehicle.
The amount of wait time spent in the queue was significant for level of re-planning
(F(1,12.3) = 18.08, p = 0.001) and marginally significant for level of automation
(F(3,13.2) = 3.10, p = 0.063) at the α = 0.05 level. A square root transformation of
the data with a 0.5 correction due to zero values was required to meet linear mixed
model normality assumptions, and there were no significant interactions. The unusual
spike in WTQ for the active level of automation under high re-planning in Figure 5-6

Figure 5-6: WTQ Across Levels of Automation and Re-planning
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warranted further investigation. Post-hoc analysis showed that the difference between
super active and both the active and manual automation levels’ aggregate WTQ was
significant (S vs. M, p = 0.041; S vs. A, p = 0.034). Further investigation showed
that for the high re-planning condition, the active level had significantly more WTQ
than both the super active and passive levels (A vs. S, p = 0.009; A vs. P, p =
0.074), but the same as the manual level.

5.3.4 Situation Awareness Wait Time (WTSA)

Situation awareness wait time in the experiment was accumulated when at least one
vehicle required attention but the operator didn’t realize it. Common situations where
WTSA was incurred included when subjects forgot to arm and fire on a target and
left a UAV loitering unnecessarily at a target, or when a subject flew a UAV into
a threat area. Situation awareness wait time was significant for level of re-planning
(F(1,12.3) = 18.70, p = 0.001) but not for level of automation (F(3,13.2) = 2.14, p =
0.144). A square root transformation of the data was required to meet equal variance
and normality assumptions, and there were no significant interactions. Despite the
non-significant result for level of automation, exploration of individual cell means was
performed to investigate the high WTSA levels of the passive and active levels under
the high re-planning condition, as can be seen in Figure 5-7. Post-hoc analysis showed

Figure 5-7: WTSA Across Levels of Automation and Re-planning
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that the difference in WTSA between the super active and both the active and manual
automation levels was significant (S vs. M, p = 0.055; S vs. A, p = 0.063). For only
the high re-planning condition, the active level was found to have significantly higher
WTSA than the super active level (p = 0.046), and marginal significance was achieved
between the active and manual levels (p = 0.091). This means that subjects in the
active, high re-planning condition had significantly higher WTSA than the manual
and super active levels for that particular test session. Interestingly, under manual
automation there was no significant difference in WTSA between the high and low
re-planning conditions.

5.3.5 Wait Time Proportions

As can be seen from Figure 5-8, total system wait time was dominated by WTSA
regardless of scenario difficulty. The proportion of WTSA was not significantly dif-
ferent between re-planning conditions (F(1,14.5) = 2.79, p = 0.116), but it made up
63% of all wait time in the low re-planning condition and 72% in the high re-planning
condition, showing a trend of increasing proportion of WTSA with difficulty. The per-
centage of WTQ more than doubled from 5 to 11% from the low to high re-planning
conditions, which was found to be a statistically significant difference (F(1,12.6) =
4.85, p = 0.047). This was expected, as the high re-planning scenario contained a
greater number of events, including instances of simultaneous re-planning events. The
proportion of WTI followed the opposite trend, as it was significantly lower in the
high re-planning condition (F(1,10.2) = 9.3, p = 0.012). The proportion of WTI was
significantly lower in the high re-planning condition because it was not significantly
different across re-planning conditions (Section 5.3.2), while total WTQ and WTSA
(time, not proportion) were significantly larger in the high re-planning scenario (Sec-
tions 5.3.3, 5.3.4). Since WTI stayed approximately the same and the other types of
wait times increased in the high re-planning scenario, the relative proportion of WTI

(a) Low (b) High

Figure 5-8: Proportions of WTI, WTQ, and WTSA Per Level of Re-planning
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decreased. There was no significant difference in the relative proportions of WTI,
WTQ, WTSA or WTT across the different levels of automation.

5.3.6 Correlation of Wait Times to Performance

Table 5.1 summarizes the correlation coefficients of the various wait times with the
performance score results from Section 5.2.1. As can be seen, situation awareness wait
time was highly negatively correlated with performance, while wait time in the queue
had a moderately high negative correlation. While this does not necessarily prove
high wait times caused lower performance, there is definitely a strong relationship
between the two measures.

Wait Time Correlation Coefficent, r p-value
WTI -0.255 0.230
WTQ -0.593 0.002
WTSA -0.894 <0.001

Table 5.1: Correlation Coefficients between Wait Times and Performance Score

5.4 Situation Awareness

In addition to human and system performance, a third major consideration in the
evaluation of all HSC systems is situation awareness, which may not always correlate
with other performance metrics. The objective SA data taken from online questions
asked during test sessions for this experiment were not found to be consistent with
the subjective SA scale outlined in Section 4.5.2. Therefore, as the objective SA
measure’s validity in the context of this study was questionable and since subjective
SA scales based upon expert observer ratings have been found to be a reliable and
valid measure way to measure SA [2], the objective SA scale was dropped in favor of
the subjective one. Using this scale, differences in overall situation awareness were
found to be significant for the two levels of re-planning (F(1,11.7) = 15.75, p = 0.002)
and not significant for level of automation (F(1,11.7) = 2.44, p = 0.112). There was
no significant interaction between factors.

From the marginal means plot (Figure 5-9), it can be seen that subjects using
active automation had an unusually low subjective SA score in the high re-planning
condition, so further investigation of this level of automation was conducted. The
difference in SA between the active and super active automation levels under high
re-planning was significant (p = 0.034), but not significant between the passive and
super active levels.

The overall subjective SA scores were then separated into level 2 SA and level
3 SA ratings and a non-parametric analysis was conducted on both datasets. Level
2 SA measures how well subjects comprehended the current situation. A Wilcoxon
Signed Rank Test on the level 2 SA scores showed there to be a marginally significant
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Figure 5-9: Overall SA Scores Across Levels of Automation and Re-planning

Figure 5-10: Average Level 2 SA Scores Per Level of Automation
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difference between levels of re-planning (p = 0.065) and a Kruskal-Wallis test showed
there to be a marginally significant difference between automation levels (p = 0.084).
Figure 5-10 shows the means across each of the automation levels, which suggests
that operators using the super active level had higher level 2 SA. Wilcoxon Rank
Sum tests showed these differences to be significant (S vs. M, p = 0.036; S vs. P, p
= 0.074; S vs. A, p = 0.020).

As previously described, level 3 SA measures subjects’ ability to project the cur-
rent situation into the future. A Wilcoxon Signed Rank test on the level 3 SA scores
showed that subjects’ level 3 SA for the high re-planning scenario was significantly
lower (p = 0.004) than for the low workload condition, but there was no effect of level
of automation. This implies that the differences in overall SA were primarily driven
by the significantly higher level 2 SA scores for the super active level.

5.5 Critical Events

As outlined in Section 4.5.2, a critical event in the context of this experiment occurred
whenever an operator committed an error of commission by erroneously firing upon
a target that had already been removed from the ATO. The operator was notified of
this ATO change through a high priority (red) message from intelligence in the chat

Figure 5-11: Erroneously Destroyed Targets Per LOA, High Re-planning Session
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box, which was additionally accompanied by an audio alert. There were nominally
three opportunities for errors of commission in the high re-planning scenario and two
in the low re-planning scenario. However, the number of potential opportunities for
error varied by participant, as it was contingent on each operator’s performance.

A non-parametric analysis was conducted to examine the effects of re-planning
and level of automation on the number of critical events that occurred in the test
sessions. A Kruskal-Wallis test showed that there was no significant difference in
errors of commission between levels of automation, while a Wilcoxon Signed Rank
test showed there to be a significantly higher number of targets erroneously destroyed
under the high re-planning condition (p = 0.034). In terms of counts, only one error of
commission was committed under the low re-planning condition, and seven in the high
re-planning scenario. Due to the low numbers of counts, a Kruskal-Wallis statistical
test comparing the levels of automation to one another under the high re-planning
condition did not prove significant, but the trend in Figure 5-11 is suggestive that
operators made more critical events errors in the manual and super active levels of
control as compared to the passive and active levels.

5.6 Workload Measures

Subjective workload measurements are thought to be useful measures of human per-
formance, but they are prone to problems such as individual interpretations of rating
scales. Tsang and Wilson [40] claim that subjective measures are reliable when used
in conjunction with other objective measures. Thus, in this experiment workload was
measured both objectively through response times to online questions, and subjec-
tively through a modified NASA TLX survey administered after each test session.

5.6.1 Subjective Workload

Subjective workload was significantly different across re-planning conditions (F(1,
14.9) = 24.16, p < 0.001) but not across automation levels. From Figure 5-12, the
unusually high subjective workload score of manual under low re-planning and active
under high re-planning were identified as points requiring further investigation. Com-
parisons within automation levels across re-planning conditions found that subjective
workload was significantly greater in the high re-planning scenario for every level of
automation except for manual, where no significant difference was found. Compar-
ison of the manual level to all other LOAs in the low re-planning scenario was not
significant (p = 0.093) and the active level to all other LOAs in the high re-planning
scenario was not significant either (p = 0.126), though the trend from Figure 5-12 is
clear and significance was nearly achieved.

5.6.2 Secondary Workload

As can be seen from Figure 5-13, secondary workload was significantly higher (and
thus spare mental capacity significantly less) for the high level of re-planning (F(1,11.5)
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Figure 5-12: Subjective Workload Across Levels of Automation and Re-planning

Figure 5-13: Average Response Times Across Levels of Automation and Re-planning
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= 14.69, p = 0.003), and significant differences across the levels of automation were
found as well (F(3,12.6) = 9.22, p = 0.002). There were no significant interactions.
Cell comparisons showed that the manual level had significantly less spare capacity
than the passive or active levels (M vs. P, p = 0.001; M vs. A, p = 0.017), but there
was no difference between the manual and super active levels. However, under the low
re-planning condition, the manual level had significantly higher secondary workload
than all other LOAs including super active (p = 0.061). Comparisons across re-
planning conditions within the passive and manual levels also showed no significant
difference for both levels (p = 0.299, passive; p = 0.089, manual), meaning the spare
capacity of the manual and passive levels did not change with re-planning level.

5.7 Summary

Table 5.2 summarizes the main effects results for all dependent variables presented in
this chapter. In general, the level of re-planning was significant across all dependent
variables (WTI excluded), while the p-values of many of the tests involving the level
of automation factor were only marginally significant. However, individual cell-to-cell
contrasts in such cases often revealed interesting relationships between the different
levels of automation. Table 5.3 summarizes these contrasts in terms of which levels of
automation were the best and worst performers for each dependent measure. In cases
where levels of automation could not be differentiated from another, both levels are
listed as having equally poor or good performance. For a summary of the descriptive
statistics for all dependent measures, see Appendix C.

Dependent Level of Level of
Variable Automation Re-planning

Performance Score 0.076 0.001
Number TOT Delay Requests 0.096 0.059
Proportion of TOT Requests Approved 0.623 0.658
Interaction Wait Time (WTI) 0.003 0.170
Wait Time in the Queue (WTQ) 0.063 0.001
Situation Awareness Wait Time (WTSA) 0.144 0.001
Situation Awareness 0.112 0.002
Erroneous Target Critical Events 0.878 0.034
Subjective Workload 0.779 <0.001
Secondary Workload 0.002 0.003

Table 5.2: Summary of Main Effects (p-values)
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Dependent Worst Best
Variable Performer Performer

Performance Score A S
Number TOT Delay Requests A M
Proportion of TOT Requests Approved M S/A
Interaction Wait Time (WTI) M/P S/A
Wait Time in the Queue (WTQ) A/M S/P
Situation Awareness Wait Time (WTSA) A S
Total System Wait Time (WTT) A S
Situation Awareness A S
Erroneous Target Critical Events S/M A/P
Subjective Workload A/M S/P
Secondary Workload M P

Table 5.3: Best and Worst Levels of Automation for Dependent Measures
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Chapter 6

Discussion

This chapter discusses the results presented in Chapter 5, how they relate to previous
work, and comparisons are made to the hypotheses proposed in Chapter 4. Four main
areas are addressed: workload, human and system performance, situation awareness,
and cognitive strategies.

6.1 Workload

In general, all dependent variables of this experiment changed in predictable ways
across the two levels of re-planning, which represent high and low levels of work-
load. As workload increased, performance and situation awareness decreased, and all
types of wait times, occurrences of critical events and subjective measures of workload
increased. As expected, spare mental capacity measured through secondary tasking
decreased with increasing workload. These results demonstrate that task performance
can vary dramatically under different workload conditions, and one design condition
that may effectively support a task under a low workload situation may be counter-
productive in a high workload setting.

Two specific trends in the workload metrics were noted that deserve further dis-
cussion: 1) the manual level showed no increase in perceived workload or decrease in
spare capacity across re-planning conditions, and 2) the super active had the same
spare capacity as the manual level, which was higher than the active or passive lev-
els. The first result implies that operators under the manual level perceived they
were under high workload irregardless of session difficulty, and that this was in fact
true because there was no change in spare capacity either. Without access to a vi-
sual representation of the future mission plan (the timeline), operators in the manual
level were not able to easily perceive changes to the mission plan, so even under low
re-planning they were constantly scanning the ATO table for changes.

The response times to online questions, which were a measure of secondary work-
load, showed that the manual and super active levels of automation had the same
average response times, which were greater than the passive and active levels. There-
fore, subjects in the manual and super active levels had less spare mental capacity.
This is an interesting result for the super active level of automation, because this
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level was supposed to have the lowest level of workload, which is related to spare
capacity. However, it is likely that that even though super active operators had good
SA, they were not directly involved with mission execution actions so they had to
work mentally harder to stay “in the loop” and maintain those high levels of SA.

6.2 Performance

6.2.1 Human Performance

The significant difference in performance scores across re-planning levels in this ex-
periment indicates that the number of re-planning events is an important influence
on command and control mission difficulty, as expected. Under low levels of re-
planning, subjects using all levels of automation performed equally well, but under
high re-planning subjects using active automation had lower performance than all
other automation levels. The poor performance of the active level is surprising, as
Ruff et al. [35] found that a medium level of automation called management-by-
consent corresponding most closely to the active level in this study had performance
advantages over manual and management-by-exception (super active) conditions for
multiple UAV supervision. Many previous studies from other domains have also found
collaborative types of automation to have superior performance to highly automated
or manual systems [18, 21, 42]. However, a primary limitation in such systems as
demonstrated in this study is that users can often be overwhelmed by the large array
of possible actions they can take. This can be particularly problematic for command
and control systems under temporal constraints and with significant uncertainty, as
was the case in this study.

The performance decrement under the active level of automation can be attributed
to subjects’ inappropriate use of the “Request TOT” function in the MAUVE sim-
ulation. Subjects often did not generate appropriate stopping rules when trying to
achieve a particular schedule move. At the detriment of other tasks and vehicles
requiring their attention, subjects often focused on obtaining a particular delay they
wanted until they obtained it. Operators’ behavior also suggested they believed they
could always make up for lost time through this function, when in reality the proba-
bility of approval became unreasonably low unless subjects were able to plan at least
several minutes in advance. Rather than cutting their losses and choosing to give
up on a target to improve a UAV’s arrival time at subsequent targets, subjects often
tried until the very last possible instant to obtain the TOT delay they needed. This
was likely due to misjudgment of the probability of obtaining a last minute approval,
as humans are not good estimators of chance and typically overestimate very small
probabilities [41].

Subjects’ second misuse of the TOT delay function was failing to consider the
impact of using it on the arrival times to subsequent targets in the queue, as movement
in one part of the schedule almost always affected ETAs to other targets. The ability
to move a target’s TOT was an intervention meant to be used sparingly, and the
consequences of doing so were rarely considered by operators. TOT requests were
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primarily driven by immediate, short-term needs and they tended to cause problems
for subjects later in the schedule, especially if they were not noticed until much later.
Given the time-critical, demanding task, it was too difficult for operators to execute
and re-plan according to the ATO as well as consider schedule optimizations far into
the future.

The reverse shading technique used to highlight areas of potential high workload
for the active automation was likely was the cause of the overuse of the TOT delay
request, as it drew operator attention to specific areas of the timeline farther into the
future. Giving operators information about potential problem areas far in advance
seemed to change their strategy from locally optimizing to that of globally optimizing.
Given that at any time there could be many different areas of high workload on the
timeline at once, and the tight constraints on the deadlines operators were under, this
was a very difficult task to achieve, often overwhelming operators and resulting in
them creating a schedule worse than before. Due to its complex nature, this process
also took a long time to perform and often caused other performance problems by
taking the operator’s focus off of the immediate, near term needs of the UAVs (local
optimization). However, significant performance and situation awareness decreases
due to these attempts at global optimization really only showed up in the high re-
planning scenario when there was much less room for operator error and inappropriate
attention allocation.

In contrast to the active level, it was observed that users in the manual level never
used the TOT delay button to relieve high workload; they only used it for short-term
movement of deadlines they were going to miss. This was because identifying areas of
high workload involved comparisons between multiple vehicles, which were facilitated
by the vertically stacked timelines, while simple schedule changes for a single UAV
did not require as much data fusion. Users of the manual level of automation were
pure local optimizers, and it served them well as they had an average level of human
performance as compared to the other automation levels, which was higher than
expected.

In general, the visual timeline format seemed to enable users to more successfully
identify problematic, high workload sections of the schedule more easily and farther in
advance, as there was an increasing trend (non-significant) of proportion of approved
TOT delays with automation level. While highlighting these potential problem areas
turned out to be detrimental to performance for the active level, this knowledge was
beneficial to schedule planning so long as operators did not feel compelled to globally
optimize like they did in the active level. The lower number of TOT delays requested
for the passive and super active levels as well as observed behavior in the test sessions
confirms that this was the case.

6.2.2 System Performance

Interaction Wait Time (WTI)

Figure 6-1 illustrates how the predictions for the trends of WTI with the levels of
automation outlined in Section 4.1 compared to the results obtained in the exper-

89



Figure 6-1: Comparison of Predicted and Actual WTI Trends

iment. In general, a decreasing trend of WTI with increasing levels of automation
was found, with the super active and active levels of automation having significantly
less WTI than the passive and manual levels, which was reasonably consistent with
expectations.

Wait Time in the Queue (WTQ)

The manual level of automation had statistically the same level of WTQ as the
active level, while the super active had significantly lower WTQ than both of these
levels. The passive level fell somewhere in between these sets of automation levels,
not significantly different from either one. These results approximately followed the
predicted trend of decreasing WTQ with automation level made in Chapter 4, except
for the relatively high average WTQ for active automation (Figure 6-2). Quantitative
analysis of WTQ accumulation in the active, high re-planning test sessions showed
that the majority was accumulated in several large queues that formed late in the
scenarios when multiple, difficult re-plans were required of the operator. While the
accumulation of WTQ in this way was not unique among automation levels, the
queues did build higher in the active level, which is why WTQ is significantly larger
in this condition. This is not surprising given the extra time operators were spending
attempting to adjust TOTs.
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Figure 6-2: Comparison of Predicted and Actual WTQ Trends

Situation Awareness Wait Time (WTSA)

Average system WTSA did not closely follow the predicted trend across the levels
of automation, as can be seen from Figure 6-3. Users of the super active level of
automation had the best WTSA times, while active had the worst and manual/passive
were in between. As WTSA is dependent on situation awareness levels and followed
the same trend, detailed discussion on why these trends were observed is left until
Section 6.3.

WTSA increased along with level of re-planning, as was expected. Higher WTSA
was expected with greater workload because subjects were already under high work-
load even in the low re-planning condition, so adding more workload on top of that
was expected to decrease their performance and lower their SA even further. As
previously discussed, lower levels of situation awareness means, in general, higher
WTSA.

6.2.3 Performance Metrics Conclusion

One of the most important findings from this study was that total system wait time
was dominated by wait times caused by loss of situation awareness, rather than inter-
action or queuing times. It is likely that several factors including additional training,
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Figure 6-3: Comparison of Predicted and Actual WTSA Trends

a more refined interface, and additional subject motivation would decrease the pro-
portion of total wait time from WTSA, but even a significant decrease would still
leave WTSA as the largest contributor to system wait times. Despite the fact that
WTQ and WTI occurred more often, WTSA was the largest contributor to total
system wait time because the average delay due to WTSA was many times that of
WTI, and to a lesser extent, WTQ.

Even though subjects performed a relatively complex task in the MAUVE simula-
tion, compared to an actual command and control situation, the task was simplified.
However, it is likely all wait times will scale proportionally. The effect of re-planning
on wait time proportions in this experiment shows that at the very least, the propor-
tion of WTSA will not decrease as task complexity and difficulty increase. As has
been shown in this experiment, increasing vehicle autonomy generally decreases WTI
and WTQ, but not necessarily WTSA. This is because WTSA is never certain to
occur and can only be probabilistically modeled based upon a subject’s level of SA,
number of vehicles to be controlled, etc. As overall system and situation awareness
wait times were shown to be highly negatively correlated with performance in Section
5.3.6, this implies that there is an inherent limit to the number of vehicles any human
can effectively supervise, no matter the degree of autonomy provided to them. This
limit will vary depending upon the task being performed by the vehicles.
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6.3 Situation Awareness

The subjective SA ratings and WTSA measure were consistent with each other in
that under high workload, operators had better SA in the super active automation
level and a degraded level of SA in the active automation level. This was contrary to
expectations, as the manual and super active levels of automation were expected to
have lower SA levels than medium levels of automation. This was predicted because
an operator’s level of SA can decrease under high workload due to competition for
attentional resources, but also decrease under low workload due to boredom and
complacency.

The active level of automation had the worst level of SA because of operators’
need to globally optimize their schedules as detailed in Section 6.1. This decreased
their level of SA for several reasons: 1) In seeking to globally optimize, subjects were
actually narrowly focused on the timeline display and not the map display, and 2)
the optimization itself was a very high workload process, causing operators to become
overloaded.

The compelling nature of the timeline decision support likely induced lower SA
for the active level, and possibly for the passive level as well. It was observed in
test sessions that many subjects in the active and passive levels exclusively looked at
the timeline decision support to schedule their time, and rarely looked at the map
display. Across all levels of automation, subjects’ general strategy was to decompose
the complex time management task into more manageable chunks. Under the active
and passive levels, a visual cue subjects used extensively to allocate their attention was
to look for yellow or red areas on the timeline (the arming and firing windows) near the
thick black line on the left side of the decision support, which told subjects an arming
and/or firing window would occur in the near future. It was observed that subjects’
performance in these levels was comparable to the manual or super active levels in
manipulating the schedule such that the UAVs arrived on time to each of their targets.
However, operators with passive and active tended to ignore the threats on the map
display and in many cases ran their UAVs straight through them, thus exhibiting
attentional blindness and cognitive tunneling. Another common instantiation of poor
relational SA under the passive and active levels occurred when subjects tried to fire
on an expired target because the timeline told them a target TOT was occurring,
only to find the relevant UAV loitering at the entirely wrong target. This generally
happened because subjects hadn’t bothered to verify the UAV’s location on the map
display in quite some time because they were overly focused on the timeline.

In contrast, subjects under the manual level frequently switched their attention
between the two displays, as their version of the decision support showed absolute
time, requiring them to constantly compare times on the decision support to the
mission time clock on the map display. It was noted during the test sessions that
manual level subjects made frequent, visible head movements that indicated attention
was being shared between the screens on a consistent basis.

Subjects in the super active level also generally did not have an attention allocation
problem caused by the decision support. As the automation took care of arming
and firing, subjects in this experimental condition did not rely on the timeline for
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scheduling these actions. Further evidence of subjects’ lack of reliance on the decision
support in the super active level was the low usage of the exception boxes that were
used to cancel arming and firing when necessary. These were located to the right of
the timeline decision support window (Figure 3-7). Of the 13 possible instances across
all super active test sessions when arming or firing was correctly cancelled as part
of a re-planning effort, the exception boxes were only used five times. This means
that subjects were not just blindly clicking on the exception boxes whenever they saw
message that a target had been removed from the ATO. Successful re-plans in these
instances could be accomplished by either using the exception box or removing the
target itself from a UAV’s mission plan, which involved selecting that target and using
the “Remove Target” function. Instead of relying on perception and overly trusting
the automation, they commonly removed the relevant target from the mission plan,
despite it taking more steps to achieve the same result. This indicates that subjects in
the super active condition understood the problem at a deeper level, which required
a high level of SA.

A break-down of the SA scores into level 2 and level 3 SA showed that there was
no difference in level 3 SA across automation levels, but that super active automa-
tion had significantly higher level 2 SA scores. This is further evidence that super
active operators were not overly focused on their decision support, as level 2 SA was
highly dependent on how aware the operator was of relational information on the map
display. This occurred because subjects in the super active level had fewer actions
to perform, and as a consequence had more time to observe events on the screens.
However, as a result being “out-of-the-loop”, i.e. not always cognitively engaged with
the vehicles, they gained no benefit for level 3 SA with this extra time.

Despite having the highest level of SA, driven by level 2 SA, subjects in the super
active automation condition erroneously destroyed more targets than those under
passive and active automation. This indicates that subjects in super active suffered
from complacency, as they were content to let the computer take care of the arming
and firing actions without closely monitoring them. This is interesting because it
seems to indicate that users in super active trusted the computer for weapons release
but not target removal. This may be a case of automation bias, as the subjects
were reluctant to intervene in what they deemed was the automation’s responsibility,
arming and firing, while they had no problem re-planning routes because they thought
that was the task that had been assigned specifically to them.

The manual level of automation had SA scores that were relatively higher than
expected in this experiment, as they were predicted to be among the lowest of all
automation levels. Considering both the subjective and secondary workload (spare
capacity) scores, it can be concluded that as expected, the manual level of automation
had the highest workload of all automation levels. However, SA was expected to
be significantly lowered due to this high level of workload, which did not happen.
Based on post-test feedback and observations in test sessions, it was observed that
with experience, subjects established a coping strategy where they developed scan
patterns much like that taught to pilots that enabled them to quickly detect when
an off-nominal situation existed in the mission plan. Operators in higher levels of
automation that had lower workload had less of a need to develop coping strategies,
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so as a consequence, the operators in the manual condition likely were the most
engaged in the scenario events. However, operators using the manual automation
had a moderate level of SA, but actually had the worst critical event performance.
Even though the scan pattern helped manual operators reduce their workload to
manageable levels, the pattern itself was quite automatic and made operators more
prone to making errors of commission as they focused on maintaining it. This result
also could be a direct consequence of operators’ high workload, as there was usually
only a short time between the abort firing command being issued and the TOT for
the affected target.

6.4 Cognitive Saturation and Coping Strategies

During testing, a measurable point of cognitive saturation was observed when subjects
were overwhelmed, either from workload generated by frequent re-planning events,
or a loss of SA. This saturation point was only seen in the high re-planning test
sessions, as the low re-planning scenario had enough rest periods to allow operators
to recover without serious loss of system performance. Once overloaded, operators’
behavior followed two distinct patterns: 1) they began to supervise fewer vehicles,
ignoring one or more entirely, or 2) they attempted to supervise all vehicles, missing
a majority of their deadlines while they tried to do so. Figure 6-4, which plots actual
UAV paths against the optimal paths over the course of two high re-planning trials,
illustrates both strategies.

In Figure 6-4(a), after target A emerged, the operator became confused as to the
appropriate routing for UAV 2. The path of UAV 2 reflects the operator’s loss of
SA as he tried various different but incorrect routings over the next few minutes,
before giving up on those vehicle’s targets entirely. While doing this, the operator
successfully followed the mission plan for UAVs 1 and 4, as can be seen by the close
match between the optimal and actual paths for those vehicles. However, UAV 2 was
left loitering at target B for over seven minutes, causing it to miss all three remaining
targets on its route. In this case, the operator employed a cognitive shedding strategy
whereby interaction effort was focused on a smaller subset of vehicles than originally
tasked to the operator. This was able to reduce the operator’s mental workload to
manageable levels and so performance on the remaining vehicles was not significantly
degraded.

In Figure 6-4(b), the operator’s saturation point occurred when he left UAV 2
loitering at target A for nearly five minutes before realizing it had stopped executing
the mission plan. The operator then tried to salvage some later targets on the route
by heading to target B, but gave up half-way there before sending the UAV to base.
In the intervening time, the operator also tried to control the other three UAVs,
but left UAV 3 loitering at target C for several minutes, then routed it through the
nearest threat area, missed target D with UAV 4, and also missed target E with
UAV 1, though this is not visible from Figure 6-4(b) because the UAV was guided to
the target but did not fire on time. After giving up trying to hit any more targets
with UAV 2, the subject’s performance on the remaining three vehicles improved
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Figure 6-4: Overloaded Operator Coping Strategies Exhibited in Test Sessions

96



dramatically. In this case, the operator tried to cope with all four vehicles at once
while in an overloaded state and ended up performing very poorly with all of them.
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Chapter 7

Conclusion

This chapter briefly summarizes the motivation for this research, presents the key
findings of this study and makes recommendations for future work.

7.1 Overview of Study Motivation

There is increasing interest in the military to develop fleets or “swarms” of highly
autonomous vehicles, but in order to make this possible, significant advances in ve-
hicle control and other areas such as human-system interfaces will be required. As
unmanned vehicles become more autonomous, the role of the human will shift from
manual control to supervisory control. HSC tasks are primarily cognitive in nature
and do not require constant attention, so this will allow operators to effectively super-
vise more than one vehicle. In the future vision of an operator supervising multiple
unmanned vehicles such as UAVs, it is desired to maximize the number that a sin-
gle human can effectively supervise. The major limiting factor on this number is
operator workload, which has clear upper limits. One way of mitigating operator
workload and improving overall system performance is through automated decision
support. However, it is not clear what type or level of decision support is appropriate
for supervision of multiple vehicles, as very highly automated systems can induce
low operator SA. This study sought to explore this problem further by investigating
which level(s) of decision support could be appropriate for multiple vehicle supervision
in a time critical setting, both from a human performance and system performance
standpoint.

7.2 Significant Findings

To this end, this study explored the human and system performance characteristics
of four different types of decision support, termed manual (LOA 1), passive (LOA
2), active (LOA 4), and super active (LOA 6) for human supervision of four UAVs
performing a suppression of enemy air defenses mission. The super active level was
found to have the best performance characteristics in terms of human and system per-
formance as defined by the performance score (Section 4.5.2) and wait times (Section
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4.5.2). In addition, operators using the super active level exhibited high situation
awareness for level 2 SA but not level 3 SA. This occurred because operators in this
level of automation had more time to observe events on the map display, but they
were not as cognitively engaged in the task as they had to perform less data process-
ing. Thus, they were very effective at perceiving changes in the current state but
no better at predicting future situations. However, operators under super active au-
tomation became complacent, allowing the automation to execute firing actions with
too little supervision. As a result, operators failed to veto the arming/firing process
several times and had a higher number of erroneously destroyed targets than the more
moderate levels of automation, passive and active.

On the other end of the automation spectrum studies in this experiment, subjects
using the manual level of automation performed better than expected. While subjects
felt that they were always under high workloads despite the level of re-planning,
they still managed to perform overall as well as subjects with the passive level of
automation. However, the manual control strategy had several drawbacks, such as
higher system wait times than all but the active level under high re-planning, and
lower spare capacity so it is likely operators could not handle a much greater pace
of operations or an increase in the number of vehicles supervised as easily as other
automation levels. Moreover, most significantly the manual level had the worst critical
event performance, inadvertently firing on the highest number of unapproved targets.

The level of automation that produced the most surprising results was the active
level of decision support, which involved a simple form of collaborative automation
that provided predictions for possible periods of task overload as well as possible
courses of action to relieve the high workload. It is important to note that subjects
were aware that the predictions were not always accurate and that the further into
the future, the less reliable the predictions. Collaborative automation is generally
thought to be beneficial for performance as it facilitates exploration of possible solu-
tion spaces that generate satisficing and creative solutions, and it also allows humans
to obtain a better understanding of the system’s operation [18, 21, 42]. However,
this was not the case in this study, as users of the active level of automation had the
worst performance of any automation level and the lowest situation awareness levels.
This statistically significant performance degradation is attributable to an unintended
consequence of the automation where the graphical visualization of the computer’s
predictions caused users to try to globally optimize the schedules for all UAVs instead
of locally optimizing schedules in the immediate future. Attempting to globally opti-
mize their schedules was a difficult task for operators because the time-critical nature
of their mission meant that there was little room for error. Under the higher work-
load condition there were large decreases in performance and situation awareness as
operators in the active condition quickly became overwhelmed and confused by their
failed attempts at global optimization. This is an example of a hidden problem with
collaborative human-computer decision making - the human can be overwhelmed by
the choices they have, and therefore there are benefits to limiting the solution space.

This study found that the passive level likely had the greatest cost/performance
benefits, as both the human and system performance was always at least at a moderate
level, its users were under some of the lowest workloads of all the levels, and it tied
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for the lowest number of targets that were erroneously destroyed with the active level.
Essentially, it was the only reliable performer as all other levels of automation had
major drawbacks associated with them.

The wait time model proposed in this study to predict the relative sizes of wait
time components across levels of automation was a good predictor of WTI and WTQ,
but not WTSA. The reason for this is because when the model was formulated, it was
assumed that the passive and active levels would have moderate levels of workload
while the super active would have very low and manual very high workload. As
an operator’s level of SA can decrease under high workload due to competition for
attentional resources [43], but also decrease under low workload due to boredom and
complacency [31], moderate levels of workload result in optimum performance. In
reality, all operators were under significant workload and any amount of workload
relief provided performance benefits as well as improved SA. As a consequence, the
super active level had the lowest total of WTSA in this study. Active level’s very
high WTSA times also were not predicted by the proposed model, and deserves more
investigation.

A significant finding from this study was that total system wait time was dom-
inated by wait time caused by a lack of situation awareness. This was consistent
across all levels of automation as well as levels of re-planning, so it is likely to be
generalizable to a larger set of unmanned vehicle missions and applications. This has
implications for multiple vehicle control, as wait time in the queue and interaction
wait time can be decreased with greater levels of autonomy, but wait time due to lack
of situation awareness cannot be entirely eliminated. This shows that no matter how
much autonomy is built into unmanned vehicles, there will be a clear upper limit on
the number of vehicles that any one person can supervise because of the need to stay
cognitively aware of unfolding events. This limit will vary depending on the task to
be performed.

It should be noted that the conclusions presented above regarding the levels of
automation may have been a function of the particular implementation of them in
MAUVE. However, the basic timeline format is not a new concept, as it is similar
to decision support tools used in previous studies [7], so the results regarding the
manual, passive, and super active automation levels should be generalizable. The
specific features of the active automation, such as not placing limitations on the
timing and number of high workload areas that could be identified, and not having
any representation of uncertainty in the computer’s predictions, are more unique.
Therefore, the active level’s results in this study are more likely to be specific to its
implementation in MAUVE.

The simulated strikes in this study occurred at an accelerated rate as compared
to a typical command and control strike task. This was accomplished by increasing
the simulated UAV velocities, and was done to ensure that all elements of a standard
strike were present in the limited length of the test sessions. This could impact
the generalizability of the results of this study to actual C2 operations. However,
the experimental task performed by operators was simplified as compared to actual
strikes, so the increased operational tempo actually helped to increase operators’
workload to more realistic levels. In addition, workload was explicitly controlled for
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in the experiment through the level of re-planning independent variable.

7.3 Recommendations and Future Work

The following are recommendations for future follow-on work based on this report:

• This work did not attempt to quantify the cost of wait times, as described
by Freed et al [15]. However, this is an important area of research to pursue
because wait times in themselves do not cause performance problems; it is the
context in which they occur. For example, it is often the case that there is no
measurable cost to wait time until a discrete failure occurs, at which time a
large, fixed cost is incurred such as in the case of dropping a bomb on a wrong
target. This event likely has a much higher cost than missing targets or battle
damage assessment assignments.

• A focus on the active, or collaborative level of automation in this study should be
undertaken to better understand several issues with its use, such as investigating
the human understanding of global versus local optimization predictions, limit-
ing the scope of collaboration to avoid overwhelming operators in time critical
situations, and implementing different predictive elements that would prevent
or at least mitigate the fixation problems seen in this study.

• The super active level clearly had performance advantages over other levels of
automation in this experiment. Therefore, it is desirable to try and leverage this
high level of performance for routine tasks while employing a different level of
decision support or an active mitigation strategy to reduce the subject’s errors
of commission for critical events. Some type of adaptive automation could be
employed that automatically reduces the level of re-planning when unexpected
events occur.

• The results from this experiment could be extended to fan out and predictions
made as to the theoretical number of “maximum” vehicles an operator could
handle in the MAUVE simulation with the different levels of automation. It
would be of particular interest to compare the results using the original equation
for fan out (Equation 2.1) proposed by Goodrich et al. [17] and the fan out
equation presented in this report incorporating wait times (Equation 2.3).

• A more in-depth investigation should look at the switching costs associated
with multiple UAV supervision, and in particular how operational tempo and
the different levels of automation in MAUVE affect them. The effect of changes
in switching costs could be studied by linking them to changes in human and
system performance. This was not possible in this study because no provision
was made to break out switching times and costs in advance. Instead, they
were included as part of interaction time, which in turn may have contributed
to WTI.

102



• More investigation into should be undertaken into operator coping strategies.
An interesting observation was that operators followed several well defined cop-
ing strategies to deal with cognitive overload, such as cognitive shedding. Re-
search focused on understanding these failure modes is needed to determine if
any particular interface elements influence the coping strategy chosen by op-
erators and how these could be used in a positive vein. This type of research
could guide future design of interfaces to support operators even while in highly
off-nominal conditions.

• The operators for this study were not trained sufficiently on the MAUVE in-
terface to be considered experts. Consequently, the results of this study could
change significantly if the operators were given substantial additional training,
particularly in reduction of WTSA as noted in Section 6.2.3. In order to verify
the results of this study and to examine the effects of expert training, the ex-
periment described in Chapter 4 should be replicated with more highly trained
subjects.
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Appendix A

MAUVE Rules of Engagement
(RoE)

The following are specific rules that governed how scenarios and UAV actions in
MAUVE operated.

A.1 Naming Conventions

• UAVs

– Numbered 1-4

• Targets

– T-XXP where XX = target number and P = priority

– Priority may be High (H), Medium (M), or Low (L)

– Examples: T-1H, T-12M, T-23L

• Waypoints (WP)

– WP-XY where X = UAV# the waypoint is associated with and Y = way-
point letter

– Examples: WP-1A, WP-2C

• Loiterpoints (LP)

– LP-XY where X = UAV# the loiterpoint is associated with and Y =
loiterpoint letter

– Examples: LP-4E, LP-3H

• Threats/Hazards

– H-XX where XX = threat number

– Example: H-1, H-12
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A.2 Arm Payload (Arming)

• Arming must be initiated within an arming or firing window, and only when
the UAV is at the desired target. The system also will not allow arming to be
started if it will not finish by the end of the firing window.

• All arming windows are 10 seconds long and always immediately precede the
beginning of a firing window.

• Arming takes 5 seconds +/- 2 seconds to complete (range 3-7 seconds). The
value was chosen at random from this range.

A.3 Fire Payload (Firing)

• Firing must occur within a firing window (TOT window), the UAV must have
previously been armed, and it only can happen when the UAV is located at the
desired target. The system also will not allow firing if it will not finish by the
end of the firing window.

• Arming may occur in the firing window, though this indicates that UAV is late
and in danger of missing its deadline, but firing may not occur in the arming
window.

• All firing windows are 20 seconds long and always immediately follow the cor-
responding arming window.

• Firing takes 5 seconds +/- 2 seconds to complete (range 3-7 seconds). The value
was chosen at random from this range.

A.4 Battle Damage Assessment (BDA)

• BDA must be scheduled prior to destroying a target, and thus cannot be added
or removed after the arming window for that particular target has started.

• If BDA is scheduled to occur, it will occur automatically after firing (no user
interaction required). However, if firing does not occur, neither will BDA, re-
gardless of whether is it scheduled or not.

• By default, all high priority targets require BDA and all medium/low priority
targets do not, unless re-planning during the scenario causes changes to this
convention.

• BDA takes 45 seconds to complete, and once started must be finished.
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A.5 Miscellaneous

• If a UAV reaches an active target (where active is defined as not destroyed and
TOT not passed), it will automatically loiter at the target. Otherwise, the UAV
will continue to the next target without stopping.

• In general, when time is short, destroy higher priority targets instead of lower
priority targets.
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Appendix B

Supplemental Experiment Screens

The screens in Figure B-1 were seen by participants throughout the test scenarios on
the two MMWS monitors not being used by the MAUVE simulation interface.

(a) Far Left Monitor

(b) Bottom Center Monitor

Figure B-1: Additional MMWS Experimental Displays
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Appendix C

Descriptive Statistics

Category N Min. Max. Mean Std. Dev.
Age (years) 12 20 42 26.33 6.97

Military Experience (years) 9 1 20 5.67 6.38
UAV Experience (hours) 2 1 20 12.50 10.61

Pilot/Flight Experience (hours) 9 5 400 119.44 140.86
Student (Y/N) 10 - - - -
Gender (M/F) 10M, 2F - - - -

Table C.1: Descriptive Statistics for Study Demographics

Dependent Measure Min. Max. Mean Std. Dev.
Performance Score 122 1000 734.053 234.275

Number of TOT Delay Requests 1 41 11.542 11.575
Prop. TOT Delay Requests Approved 0 1 0.541 0.354

Interaction Wait Time (WTI) 19 299 81.542 57.599
Wait Time in the Queue WTQ 0 182 35 43.364

Situation Awareness Wait Time (WTSA) 10 831 263.708 239.730
Total System Wait Time (WTT) 31 890 346.083 237.774

Situation Awareness 1 5 3.688 1.111
Erroneous Target Critical Events 0 2 0.333 0.565

Subjective Workload 38 84.667 62.625 12.897
Secondary Workload 21 58.67 36.740 10.368

Table C.2: Descriptive Statistics for all Dependent Measures
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Appendix D

Performance Score

D.1 Overview

The performance score was designed to be an overall measure of session performance.
It is independent of re-planning level, or how many events were planned to occur
in a specific scenario. An individual’s score was based upon the total number and
type of mission objectives they completed over the course of an entire session, while
penalties were assessed for actions that had negative consequences for the mission
plan, such as a UAV taking hits or incorrectly destroying a target. Each completed
mission objective or penalty event had a particular amount of points associated with
it, negative or positive, from which the performance score was calculated as 1000
times the number of points accumulated, divided by the total number possible in
that test session.

D.2 Earned Points

Earned points in the performance score were accumulated when the operator success-
fully completed various mission objectives. The base number of points earned in the
performance score for achieving an objective (Table D.1) corresponded to how long
finishing that objective took, or was scheduled to take in the scenario. For example,
performing BDA took 45 seconds, so it was worth 45 base points, while destroying a
target was worth 30 base points because that was the length of the arming plus firing
windows for each target in the test sessions. This was then modified by the priority
of the target itself and the difficulty of that target (Table D.2). Before taking into
account target difficulty, medium priority targets were set to be worth 1.5 times a low

Event Base Points
Target Correctly Destroyed 30
BDA Correctly Performed 45

Table D.1: Base Points Earned For Completion of Primary Mission Objectives
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Priority Difficulty Modified Points
Hard 67.5

High Medium 60
Low 52.5
Hard 52.5

Medium Medium 45
Low 37.5
Hard 37.5

Low Medium 30
Low 22.5

Table D.2: Modified Points Earned for Target Destruction

priority target (45 points) and high priority targets twice as much (60 points). These
ratios were consistent with the rules of engagement and prioritized objectives given
to subjects in the simulation. The specific numbers were chosen because the average
target priority throughout all of the test scenarios was medium, which corresponded
to an average of 45 points per target destroyed, the same as BDA. As completing
both types of actions awarded the same average number of points and targets took
a maximum of 30 seconds to destroy while BDA took 45 seconds to complete, this
meant that subjects’ time was more valuable spent destroying targets.

Throughout the test scenarios. there was significant variability in how difficult
it was to destroy a target. Factors influencing how difficult a target was to destroy
included whether it was affected by re-planning, the number of simultaneous events
occurring near to the target’s TOT, and whether it was at the start, middle or end
of a route. To account for this in the performance score, each target in the test
sessions was assigned a difficulty of low, medium, or high based upon a combination
of two independent, expert observer ratings and experiment data on how often each
target was missed by operators. This data is presented in Table D.3 for the low re-
planning scenario, and Table D.4 for the high re-planning scenario. To avoid biasing
the performance scores between different scenarios, 1/3 of the targets were assigned
each to each difficulty level, and if the targets could not be divided equally between
the difficulty ratings, an additional number of medium difficulty ratings for targets
were assigned.

The base point differential between targets of differing priorities was 15 per level of
difference (i.e. 15 unless the two targets being compared were low and high priorities,
in which case the difference was 2 levels, or 30 points). As it was determined that
priority was a more important indicator of a target’s relative value to the mission
plan than difficulty, the number of points the difficulty adjustment could modify a
target’s score up or down was half of this difference (7.5 points). Therefore, if a target
was assigned a difficulty rating of easy, it was worth 7.5 points less than normal, a
medium difficulty rating resulted in no change, and a hard rating increased its value
by 7.5 points. For a complete listing of target values based on priority and difficulty
rating, see Table D.2. This modification was small enough that a lower priority target
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Target Incompletion Observer 1 Observer 2 Combined
Name Rate Rating Rating Rating
T-1M 0 L H M
T-2H 0 L L L
T-3H 0 L M L
T-4L 0 M L M
T-5H 0 L L L
T-6H 0 L M M
T-7M 0 L L L
T-8L 0 M H H
T-9M 0.08 H M H
T-10M 0.08 H H H
T-11L 0.08 H M H
T-12L 0 M L L
T-13L 0 M M M
T-14H 0.08 H M M
T-15H 0.75 H H H
T-16M 0 L L L
T-17L 0.08 H M M
T-18M 0 L H M
T-19M 0 M H H

Table D.3: Target Difficulty Ratings for the Low Re-planning Scenario

could never be worth more than a higher priority target, or vice versa. For example,
an easy difficulty high priority target was worth 52.5 points, while a hard difficulty
medium priority target was worth the same, as can be seen in Table D.2.

BDA points were also modified based upon difficulty, because even though BDA
took a long time to perform, in most cases it was already scheduled at mission launch
and did not require any attention on the part of the operator. This made it a very
easy task for operators to perform. The only challenging part of BDA for operators
was accommodating changes in BDA into their schedule at the last minute, as was
the case for re-planning events. Therefore, BDA events were either classified as being
difficult or easy based upon whether the event was affected by re-planning or not.
If a difficult BDA event was completed, it was worth the full 45 base points, but
completion of easier, automated BDA events was modified to award only half points
(22.5).

D.3 Penalty Points

Penalty points were assessed when the operator performed actions or guided at least
one of the UAVs under their supervision into a state that ran counter to mission
objectives. The four types of possible events that incurred penalty points were 1)
destroying a target when there previously had been a command not to do so, 2)
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Target Incompletion Observer 1 Observer 2 Combined
Name Rate Rating Rating Rating
T-1L 0.25 H H H
T-2M 0 L L L
T-3H 0.17 L M L
T-4H 0.50 H M H
T-5H 0.33 M L M
T-6M 0.08 M L L
T-7H 0.25 M M M
T-8L 0.17 M M M
T-9L 0.58 H H H
T-10H 0.42 M H H
T-11M 0.25 L M M
T-12L 0.17 L L L
T-13L 0.17 L M M
T-14L 0.33 H L M
T-15M 0.17 M L L
T-16H 0 M L L
T-17M 0.25 H M H
T-18M 0.08 L H M
T-19M 0.83 H H H

Table D.4: Target Difficulty Ratings for the High Re-planning Scenario

incorrectly performing BDA, 3) having a UAV enter a threat area, or 4) arriving at
base beyond the mission time limit. The penalties assessed, just like for points earned,
were based upon the time it took to accomplish that particular event, and are listed
in Table D.5. As destroying a target due to missed or ignored orders is a critical event
in command and control situations, operators were doubly penalized for doing this in
the performance score. Subjects did not receive points for destroying inappropriate
targets, and were penalized 45 additional points each time this error occurred. This
number of penalty points was chosen because it was equal to what an average target
was worth in the scenario, and in these types of situations, the priority of the target
itself becomes the order not to fire the weapon. The same double penalty did not
apply when the operator incorrectly performed BDA on a target. In that case, the
operator did not receive points for taking the action, as it was of no use to the mission,

Event Penalty Points
Target Incorrectly Destroyed 45
BDA Incorrectly Performed 0

Threat Hit 10
Late Arrival to Base 1 per second

Table D.5: Penalty Points for Actions Counter to Mission Objectives
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and the wasted time spent performing that BDA would translate into time penalties
in subsequent events. In following with the one second per point reasoning outlined
above, late arrivals to base were penalized at a rate of 1 point per second, per vehicle,
and hits on any UAV at 10 per hit, because threats fired on UAVs in threat areas
every 10 seconds.
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Appendix E

Subjective Situation Awareness
(SA) Score

E.1 Indicators of Situation Awareness

The subjective SA score was based upon what were judged to be the four most salient
indicators of situation awareness in the test sessions. These indicators were:

1. The number of entries into threat areas where the UAV received 3 or more hits
and the operator did not intervene to minimize further damage to that UAV.

2. The amount of system wait time at targets due to loss of situation awareness.

3. The number of targets missed due to lack of situation awareness.

4. The percentage of re-planning events successfully completed.

The first two indicators measured level 2 SA (comprehension), as a UAV loitering
unnecessarily at a target or a UAV traveling through a threat area could be perceived
directly from the map display. The second two indicators measured level 3 SA (future
projection), as a failure to successfully complete a re-plan or a missing a target due
to a lack of SA meant that the operator had not properly executed, modified and
projected the mission plan in response to scenario events.

E.2 Rating Scales and Scoring

The range of possible values for each of the SA indicators listed above were grouped
and ranked on a 1-5 scale (Table E.1). The scale range was chosen so the subjec-
tive SA score could easily be compared to the objective SA score developed for this
study (responses to the online questions). The groupings were based on subjective
expert observations of all the experimental trials. Each test session was assigned four
individual scores, one for each indicator, and the average of these ratings was the
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Subjective Number entries Amount of time Number of Percentage
Situation into threat areas, UAVs spent loitering targets missed of re-plans
Awareness no operator at missed or removed due to successfully

Score intervention targets (s) lack of SA completed
5 0 0 0-1 90 or more
4 - 0-30 2-3 80-90
3 1 30-120 4-5 70-80
2 - 120-300 6-7 60-70
1 2 or more 300 or more 8 or more 60 or less

Table E.1: Subjective SA Indicator Rating Scales

subjective SA score for that test session. A score for Level 2 SA was obtained by av-
eraging the ratings for indicators 1 and 2, while a score for Level 3 SA was obtained
similarly with indicators 3 and 4.

As an example of how to calculate the subjective SA scores for a trial, consider
the following data from one of the test sessions: 0 entries into threat areas, 95 seconds
of system wait time at targets due to loss of SA, 3 targets missed due to lack of SA,
and 86% of all re-plans completed successfully. From table E.1, this would result in
ratings of 5, 3, 4, and 4 for the SA indicators listed above, giving an overall subjective
SA score of (5+3+4+4)/4 = 4, a subjective level 2 SA score of (5+3)/2 = 4, and a
subjective level 3 SA score of (4+4)/2 = 4 for this test session.
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Appendix F

Example Trial Time Series

The following series of screenshots are an example of what subjects saw on their
displays over the course of an entire test session, taken at approximately two minute
intervals. The trial shown is with the super active automation level and the high
re-planning scenario.
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(a) Navigation Window

(b) Decision Support Window

Figure F-1: Super Active and High Re-planning Example - 12:00:59
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(a) Navigation Window

(b) Decision Support Window

Figure F-2: Super Active and High Re-planning Example - 12:02:19
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(a) Navigation Window

(b) Decision Support Window

Figure F-3: Super Active and High Re-planning Example - 12:05:34
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(a) Navigation Window

(b) Decision Support Window

Figure F-4: Super Active and High Re-planning Example - 12:07:39
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(a) Navigation Window

(b) Decision Support Window

Figure F-5: Super Active and High Re-planning Example - 12:08:54
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(a) Navigation Window

(b) Decision Support Window

Figure F-6: Super Active and High Re-planning Example - 12:10:29
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(a) Navigation Window

(b) Decision Support Window

Figure F-7: Super Active and High Re-planning Example - 12:12:44
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(a) Navigation Window

(b) Decision Support Window

Figure F-8: Super Active and High Re-planning Example - 12:15:24
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(a) Navigation Window

(b) Decision Support Window

Figure F-9: Super Active and High Re-planning Example - 12:17:14
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(a) Navigation Window

(b) Decision Support Window

Figure F-10: Super Active and High Re-planning Example - 12:20:09
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(a) Navigation Window

(b) Decision Support Window

Figure F-11: Super Active and High Re-planning Example - 12:21:49
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(a) Navigation Window

(b) Decision Support Window

Figure F-12: Super Active and High Re-planning Example - 12:23:04
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