1,544 research outputs found

    Bandwidth of linearized electrooptic modulators

    Get PDF
    Many schemes have been proposed to make high dynamic range analog radio frequency (RF) photonic links by linearizing the transfer function of the link's modulator. This paper studies the degrading effects of finite transit time and optical and electrical velocity dispersion on such linearization schemes. It further demonstrates that much of the lost dynamic range in some modulators may be regained by segmenting and rephasing the RF transmission line

    Effects of Velocity Mismatch and Transit Time on Linearized Electro-Optic Modulators

    Get PDF
    The program written for this study allows calculations for periodically-rephased modulators since the modulator is already broken up into a series of incremental matrices. Thus if the modulator is allowed to be mismatched for a few matrices and then rephased for the next few and so on, we have the results shown for a four segment modulator (3 rephasings). modulators are considered

    Allied Chemical, the Kepone Incident, and the Settlements: Twenty Years Later

    Get PDF
    Twenty years ago this July the happenings at a small chemical plant in Hopewell, Virginia ushered in what has since become an incident of national impact and importance. Through the prosecution of criminal cases, the filing of civil personal injury suits and the closing of the James River to fishing, the release of the chemical from the Kepone manufacturing process gained national attention

    Linearized modulators for analog photonic links

    Get PDF
    The potential applications of high dynamic range analog RF photonic links include antenna remoting, photonic-coupled phased-array antennas, and cable-television transmission. This paper compares the results obtained with a number of different electro-optic modulator types and link configurations assuming an ideal velocity-matched modulator. The degrading effects of velocity mismatching are also presented for some of the modulators studied

    Antenna-Coupled Millimeter-Wave Electro-optic Modulators for 20 to 100 GHz

    Get PDF
    Coupling the signal to the electrodes of an integrated electro-optical modulator with an array of antennas is used to velocity-match the modulation and optical waves, greatly extending-the length-to-modulation frequency product of the modulator. In addition, antenna coupling eliminates the parasitic elements associated with coax connectors, matching transformers and bond wires. This paper summarizes the results obtained to date with this technique at 20 to 100 GHz, with phase modulators, Mach-Zehnder modulators, and delta-beta directional coupler modulators

    Large-Scale Atomistic Simulations of Environmental Effects on the Formation and Properties of Molecular Junctions

    Full text link
    Using an updated simulation tool, we examine molecular junctions comprised of benzene-1,4-dithiolate bonded between gold nanotips, focusing on the importance of environmental factors and inter-electrode distance on the formation and structure of bridged molecules. We investigate the complex relationship between monolayer density and tip separation, finding that the formation of multi-molecule junctions is favored at low monolayer density, while single-molecule junctions are favored at high density. We demonstrate that tip geometry and monolayer interactions, two factors that are often neglected in simulation, affect the bonding geometry and tilt angle of bridged molecules. We further show that the structures of bridged molecules at 298 and 77 K are similar.Comment: To appear in ACS Nano, 30 pages, 5 figure

    The Influence of Molecular Adsorption on Elongating Gold Nanowires

    Full text link
    Using molecular dynamics simulations, we study the impact of physisorbing adsorbates on the structural and mechanical evolution of gold nanowires (AuNWs) undergoing elongation. We used various adsorbate models in our simulations, with each model giving rise to a different surface coverage and mobility of the adsorbed phase. We find that the local structure and mobility of the adsorbed phase remains relatively uniform across all segments of an elongating AuNW, except for the thinning region of the wire where the high mobility of Au atoms disrupts the monolayer structure, giving rise to higher solvent mobility. We analyzed the AuNW trajectories by measuring the ductile elongation of the wires and detecting the presence of characteristic structural motifs that appeared during elongation. Our findings indicate that adsorbates facilitate the formation of high-energy structural motifs and lead to significantly higher ductile elongations. In particular, our simulations result in a large number of monatomic chains and helical structures possessing mechanical stability in excess of what we observe in vacuum. Conversely, we find that a molecular species that interacts weakly (i.e., does not adsorb) with AuNWs worsens the mechanical stability of monatomic chains.Comment: To appear in Journal of Physical Chemistry

    Observations of Energetic Ions and Electrons in the Distant Heliosphere: 2001 – 2005.0

    Get PDF
    As Voyager 1 (V1) moves closer to the heliospheric termination shock (TS), a new energetic particle population is observed: Termination Shock Particle events (TSP). Interplanetary disturbances in the form of merged interaction regions (MIRs) — identified using Voyager 2 (V2) data — have a major effect on the V1 TSP events from their onset to termination along with triggering episodic increases in higher energy ions (35 MeV H) and MeV electrons. The nature of these interactions appear to evolve as V1 moves closer to the TS

    Assessment of variation in the alberta context tool: the contribution of unit level contextual factors and specialty in Canadian pediatric acute care settings

    Get PDF
    Background: There are few validated measures of organizational context and none that we located are parsimonious and address modifiable characteristics of context. The Alberta Context Tool (ACT) was developed to meet this need. The instrument assesses 8 dimensions of context, which comprise 10 concepts. The purpose of this paper is to report evidence to further the validity argument for ACT. The specific objectives of this paper are to: (1) examine the extent to which the 10 ACT concepts discriminate between patient care units and (2) identify variables that significantly contribute to between-unit variation for each of the 10 concepts. Methods: 859 professional nurses (844 valid responses) working in medical, surgical and critical care units of 8 Canadian pediatric hospitals completed the ACT. A random intercept, fixed effects hierarchical linear modeling (HLM) strategy was used to quantify and explain variance in the 10 ACT concepts to establish the ACT’s ability to discriminate between units. We ran 40 models (a series of 4 models for each of the 10 concepts) in which we systematically assessed the unique contribution (i.e., error variance reduction) of different variables to between-unit variation. First, we constructed a null model in which we quantified the variance overall, in each of the concepts. Then we controlled for the contribution of individual level variables (Model 1). In Model 2, we assessed the contribution of practice specialty (medical, surgical, critical care) to variation since it was central to construction of the sampling frame for the study. Finally, we assessed the contribution of additional unit level variables (Model 3). Results: The null model (unadjusted baseline HLM model) established that there was significant variation between units in each of the 10 ACT concepts (i.e., discrimination between units). When we controlled for individual characteristics, significant variation in the 10 concepts remained. Assessment of the contribution of specialty to between-unit variation enabled us to explain more variance (1.19% to 16.73%) in 6 of the 10 ACT concepts. Finally, when we assessed the unique contribution of the unit level variables available to us, we were able to explain additional variance (15.91% to 73.25%) in 7 of the 10 ACT concepts. Conclusion: The findings reported here represent the third published argument for validity of the ACT and adds to the evidence supporting its use to discriminate patient care units by all 10 contextual factors. We found evidence of relationships between a variety of individual and unit-level variables that explained much of this between-unit variation for each of the 10 ACT concepts. Future research will include examination of the relationships between the ACT’s contextual factors and research utilization by nurses and ultimately the relationships between context, research utilization, and outcomes for patients
    corecore