396 research outputs found

    Mathematics of random growing interfaces

    Full text link
    We establish a thermodynamic limit and Gaussian fluctuations for the height and surface width of the random interface formed by the deposition of particles on surfaces. The results hold for the standard ballistic deposition model as well as the surface relaxation model in the off-lattice setting. The results are proved with the aid of general limit theorems for stabilizing functionals of marked Poisson point processes.Comment: 12 page

    Fragility and hysteretic creep in frictional granular jamming

    Full text link
    The granular jamming transition is experimentally investigated in a two-dimensional system of frictional, bi-dispersed disks subject to quasi-static, uniaxial compression at zero granular temperature. Currently accepted results show the jamming transition occurs at a critical packing fraction ϕc\phi_c. In contrast, we observe the first compression cycle exhibits {\it fragility} - metastable configuration with simultaneous jammed and un-jammed clusters - over a small interval in packing fraction (ϕ1<ϕ<ϕ2\phi_1 < \phi < \phi_2). The fragile state separates the two conditions that define ϕc\phi_c with an exponential rise in pressure starting at ϕ1\phi_1 and an exponential fall in disk displacements ending at ϕ2\phi_2. The results are explained through a percolation mechanism of stressed contacts where cluster growth exhibits strong spatial correlation with disk displacements. Measurements with several disk materials of varying elastic moduli EE and friction coefficients μ\mu, show friction directly controls the start of the fragile state, but indirectly controls the exponential slope. Additionally, we experimentally confirm recent predictions relating the dependence of ϕc\phi_c on μ\mu. Under repetitive loading (compression), the system exhibits hysteresis in pressure, and the onset ϕc\phi_c increases slowly with repetition number. This friction induced hysteretic creep is interpreted as the granular pack's evolution from a metastable to an eventual structurally stable configuration. It is shown to depend upon the quasi-static step size Δϕ\Delta \phi which provides the only perturbative mechanism in the experimental protocol, and the friction coefficient μ\mu which acts to stabilize the pack.Comment: 12 pages, 10 figure

    Macroscopic behavior of bidisperse suspensions of noncolloidal particles in yield stress fluids

    Get PDF
    We study both experimentally and theoretically the rheological behavior of isotropic bidisperse suspensions of noncolloidal particles in yield stress fluids. We focus on materials in which noncolloidal particles interact with the suspending fluid only through hydrodynamical interactions. We observe that both the elastic modulus and yield stress of bidisperse suspensions are lower than those of monodisperse suspensions of same solid volume fraction. Moreover, we show that the dimensionless yield stress of such suspensions is linked to their dimensionless elastic modulus and to their solid volume fraction through the simple equation of Chateau et al.[J. rheol. 52, 489-506 (2008)]. We also show that the effect of the particle size heterogeneity can be described by means of a packing model developed to estimate random loose packing of assemblies of dry particles. All these observations finally allow us to propose simple closed form estimates for both the elastic modulus and the yield stress of bidisperse suspensions: while the elastic modulus is a function of the reduced volume fraction Ď•/Ď•m\phi/\phi_m only, where Ď•m\phi_m is the estimated random loose packing, the yield stress is a function of both the volume fraction Ď•\phi and the reduced volume fraction

    Frictionless bead packs have macroscopic friction, but no dilatancy

    Get PDF
    The statement of the title is shown by numerical simulation of homogeneously sheared packings of frictionless, nearly rigid beads in the quasistatic limit. Results coincide for steady &#64258;ows at constant shear rate &#947; in the limit of small &#947; and static approaches, in which packings are equilibrated under growing deviator stresses. The internal friction angle &#981;, equal to 5.76 ±\pm 0.22 degrees in simple shear, is independent on the average pressure P in the rigid limit. It is shown to stem from the ability of stable frictionless contact networks to form stress-induced anisotropic fabrics. No enduring strain localization is observed. Dissipation at the macroscopic level results from repeated network rearrangements, like the e&#64256;ective friction of a frictionless slider on a bumpy surface. Solid fraction &#934; remains equal to the random close packing value &#8771; 0.64 in slowly or statically sheared systems. Fluctuations of stresses and volume are observed to regress in the large system limit, and we conclude that the same friction law for simple shear applies in the large psystem limit if normal stress or density is externally controlled. De&#64257;ning the inertia number as I = &#947; m/(aP), with m the grain mass and a its diameter, both internal friction coe&#64259;cient μ\mu&#8727; = tan &#981; and volume 1/&#934; increase as powers of I in the quasistatic limit of vanishing I, in which all mechanical properties are determined by contact network geometry. The microstructure of the sheared material is characterized with a suitable parametrization of the fabric tensor and measurements of connectivity and coordination numbers associated with contacts and near neighbors.Comment: 19 pages. Additional technical details may be found in v

    Study of Optimal Perimetric Testing In Children (OPTIC): Development and feasibility of the kinetic perimetry reliability measure (KPRM)

    Get PDF
    INTRODUCTION: Interpretation of perimetric findings, particularly in children, relies on accurate assessment of test reliability, yet no objective measures of reliability exist for kinetic perimetry. We developed the kinetic perimetry reliability measure (KPRM), a quantitative measure of perimetric test reproducibility/reliability and report here its feasibility and association with subjective assessment of reliability. METHODS: Children aged 5-15 years, without an ophthalmic condition that affects the visual field, were recruited from Moorfields Eye Hospital and underwent Goldmann perimetry as part of a wider research programme on perimetry in children. Subjects were tested with two isopters and the blind spot was plotted, followed by a KPRM. Test reliability was also scored qualitatively using our examiner-based assessment of reliability (EBAR) scoring system, which standardises the conventional clinical approach to assessing test quality. The relationship between KPRM and EBAR was examined to explore the use of KPRM in assessing reliability of kinetic fields. RESULTS: A total of 103 children (median age 8.9 years; IQR: 7.1 to 11.8 years) underwent Goldmann perimetry with KPRM and EBAR scoring. A KPRM was achieved by all children. KPRM values increased with reducing test quality (Kruskal-Wallis, p=0.005), indicating greater testretest variability, and reduced with age (linear regression, p=0.015). One of 103 children (0.97%) demonstrated discordance between EBAR and KPRM. CONCLUSION: KPRM and EBAR are distinct but complementary approaches. Though scores show excellent agreement, KPRM is able to quantify withintest variability, providing data not captured by subjective assessment. Thus, we suggest combining KPRM with EBAR to aid interpretation of kinetic perimetry test reliability in children

    Internal states of model isotropic granular packings. III. Elastic properties

    Get PDF
    In this third and final paper of a series, elastic properties of numerically simulated isotropic packings of spherical beads assembled by different procedures and subjected to a varying confining pressure P are investigated. In addition P, which determines the stiffness of contacts by Hertz's law, elastic moduli are chiefly sensitive to the coordination number, the possible values of which are not necessarily correlated with the density. Comparisons of numerical and experimental results for glass beads in the 10kPa-10MPa range reveal similar differences between dry samples compacted by vibrations and lubricated packings. The greater stiffness of the latter, in spite of their lower density, can hence be attributed to a larger coordination number. Voigt and Reuss bounds bracket bulk modulus B accurately, but simple estimation schemes fail for shear modulus G, especially in poorly coordinated configurations under low P. Tenuous, fragile networks respond differently to changes in load direction, as compared to load intensity. The shear modulus, in poorly coordinated packings, tends to vary proportionally to the degree of force indeterminacy per unit volume. The elastic range extends to small strain intervals, in agreement with experimental observations. The origins of nonelastic response are discussed. We conclude that elastic moduli provide access to mechanically important information about coordination numbers, which escape direct measurement techniques, and indicate further perspectives.Comment: Published in Physical Review E 25 page

    Life Study Standard Operating Procedures: Infant Eyes and Vision Assessment

    Get PDF

    Life Study Standard Operating Procedures Adult Eyes and Vision Assessment

    Get PDF

    Internal states of model isotropic granular packings. I. Assembling process, geometry and contact networks

    Get PDF
    This is the first paper of a series of three, reporting on numerical simulation studies of geometric and mechanical properties of static assemblies of spherical beads under an isotropic pressure. Frictionless systems assemble in the unique random close packing (RCP) state in the low pressure limit if the compression process is fast enough, slower processes inducing traces of crystallization, and exhibit specific properties directly related to isostaticity of the force-carrying structure. The different structures of frictional packings assembled by various methods cannot be classified by the sole density. While lubricated systems approach RCP densities and coordination number z^*~=6 on the backbone in the rigid limit, an idealized "vibration" procedure results in equally dense configurations with z^*~=4.5. Near neighbor correlations on various scales are computed and compared to available laboratory data, although z^* values remain experimentally inaccessible. Low coordination packings have many rattlers (more than 10% of the grains carry no force), which should be accounted for on studying position correlations, and a small proportion of harmless "floppy modes" associated with divalent grains. Frictional packings, however slowly assembled under low pressure, retain a finite level of force indeterminacy, except in the limit of infinite friction.Comment: 29 pages. Published in Physical Review
    • …
    corecore