40 research outputs found

    What Is the Negative Predictive Value of Multiparametric Magnetic Resonance Imaging in Excluding Prostate Cancer at Biopsy? A Systematic Review and Meta-analysis from the European Association of Urology Prostate Cancer Guidelines Panel

    Get PDF
    Context: It remains unclear whether patients with a suspicion of prostate cancer (PCa) and negative multiparametric magnetic resonance imaging (mpMRI) can safely obviate prostate biopsy. Objective: To systematically review the literature assessing the negative predictive value (NPV) of mpMRI in patients with a suspicion of PCa. Evidence acquisition: The Embase, Medline, and Cochrane databases were searched up to February 2016. Studies reporting prebiopsy mpMRI results using transrectal or transperineal biopsy as a reference standard were included. We further selected for meta-analysis studies with at least 10-core biopsies as the reference standard, mpMRI comprising at least T2-weighted and diffusion-weighted imaging, positive mpMRI defined as a Prostate Imaging Reporting Data System/Likert score of ≥3/5 or ≥4/5, and results reported at patient level for the detection of overall PCa or clinically significant PCa (csPCa) defined as Gleason ≥7 cancer. Evidence synthesis: A total of 48 studies (9613 patients) were eligible for inclusion. At patient level, the median prevalence was 50.4% (interquartile range [IQR], 36.4–57.7%) for overall cancer and 32.9% (IQR, 28.1–37.2%) for csPCa. The median mpMRI NPV was 82.4% (IQR, 69.0–92.4%) for overall cancer and 88.1% (IQR, 85.7–92.3) for csPCa. NPV significantly decreased when cancer prevalence increased, for overall cancer (r = –0.64, p < 0.0001) and csPCa (r = –0.75, p = 0.032). Eight studies fulfilled the inclusion criteria for meta-analysis. Seven reported results for overall PCa. When the overall PCa prevalence increased from 30% to 60%, the combined NPV estimates decreased from 88% (95% confidence interval [95% CI], 77–99%) to 67% (95% CI, 56–79%) for a cut-off score of 3/5. Only one study selected for meta-analysis reported results for Gleason ≥7 cancers, with a positive biopsy rate of 29.3%. The corresponding NPV for a cut-off score of ≥3/5 was 87.9%. Conclusions: The NPV of mpMRI varied greatly depending on study design, cancer prevalence, and definitions of positive mpMRI and csPCa. As cancer prevalence was highly variable among series, risk stratification of patients should be the initial step before considering prebiopsy mpMRI and defining those in whom biopsy may be omitted when the mpMRI is negative. Patient summary This systematic review examined if multiparametric magnetic resonance imaging (MRI) scan can be used to reliably predict the absence of prostate cancer in patients suspected of having prostate cancer, thereby avoiding a prostate biopsy. The results suggest that whilst it is a promising tool, it is not accurate enough to replace prostate biopsy in such patients, mainly because its accuracy is variable and influenced by the prostate cancer risk. However, its performance can be enhanced if there were more accurate ways of determining the risk of having prostate cancer. When such tools are available, it should be possible to use an MRI scan to avoid biopsy in patients at a low risk of prostate cancer

    Deconstructing, Addressing, and Eliminating Racial and Ethnic Inequities in Prostate Cancer Care

    No full text
    CONTEXT: Men of African ancestry have demonstrated markedly higher rates of prostate cancer mortality than men of other races and ethnicities around the world. In fact, the highest rates of prostate cancer mortality worldwide are found in the Caribbean and Sub-Saharan West Africa, and among men of African descent in the USA. Addressing this inequity in prostate cancer care and outcomes requires a focused research approach that creates durable solutions to address the structural, social, environmental, and health factors that create racial disparities in care and outcomes. OBJECTIVE: To introduce a conceptual model for evaluating racial inequities in prostate cancer care to facilitate the development of translational research studies and interventions. EVIDENCE ACQUISITION: A collaborative review of literature relevant to racial inequities in prostate cancer care and outcomes was performed. Existing literature was used to highlight various components of the conceptual model to inform future research and interventions toward equitable care and outcomes. EVIDENCE SYNTHESIS: Racial inequities in prostate cancer outcomes are driven by a series of structural and social determinants of health that impact exposures, mediators, and outcomes. Social determinants of equity, such as laws/policies, economic systems, and structural racism, affect the inequitable access to environmental and neighborhood exposures, in addition to health care access. Although the incidence disparity remains problematic, various studies have demonstrated parity in outcomes when social and health factors, such as access to equitable care, are normalized. Few studies have tested interventions to reduce inequities in prostate cancer among Black men. CONCLUSIONS: Worldwide, men of African ancestry demonstrate worse outcomes in prostate cancer, a phenomenon driven largely by social factors that inform biologic, environmental, and health care risks. A conceptual model was presented that organizes the many factors that influence prostate cancer incidence and mortality. Within that framework, we must understand the current state of inequities in clinical prostate cancer practice, the optimal state of what equitable practice would be, and how achieving equity in prostate cancer care balances costs, benefits, and harms. More robust characterization of the sources of prostate cancer inequities should inform testing of ambitious and innovative interventions as we work toward equity in care and outcomes. PATIENT SUMMARY: Men of African ancestry demonstrate the highest rates of prostate cancer mortality, which may be reduced through social interventions. We present a framework for formalizing the identification of the drivers of prostate cancer inequities to facilitate the development of interventions and trials to eradicate them

    EAU-ESTRO-SIOG Guidelines on Prostate Cancer. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent

    Get PDF
    Objective To present a summary of the 2016 version of the European Association of Urology (EAU) - European Society for Radiotherapy & Oncology (ESTRO) - International Society of Geriatric Oncology (SIOG) Guidelines on screening, diagnosis, and local treatment with curative intent of clinically localised prostate cancer (PCa). Evidence acquisition The working panel performed a literature review of the new data (2013–2015). The guidelines were updated and the levels of evidence and/or grades of recommendation were added based on a systematic review of the evidence. Evidence synthesis BRCA2 mutations have been added as risk factors for early and aggressive disease. In addition to the Gleason score, the five-tier 2014 International Society of Urological Pathology grading system should now be provided. Systematic screening is still not recommended. Instead, an individual risk-adapted strategy following a detailed discussion and taking into account the patient's wishes and life expectancy must be considered. An early prostate-specific antigen test, the use of a risk calculator, or one of the promising biomarker tools are being investigated and might be able to limit the overdetection of insignificant PCa. Breaking the link between diagnosis and treatment may lower the overtreatment risk. Multiparametric magnetic resonance imaging using standardised reporting cannot replace systematic biopsy, but robustly nested within the diagnostic work-up, it has a key role in local staging. Active surveillance always needs to be discussed with very low-risk patients. The place of surgery in high-risk disease and the role of lymph node dissection have been clarified, as well as the management of node-positive patients. Radiation therapy using dose-escalated intensity-modulated technology is a key treatment modality with recent improvement in the outcome based on increased doses as well as combination with hormonal treatment. Moderate hypofractionation is safe and effective, but longer-term data are still lacking. Brachytherapy represents an effective way to increase the delivered dose. Focal therapy remains experimental while cryosurgery and HIFU are still lacking long-term convincing results. Conclusions The knowledge in the field of diagnosis, staging, and treatment of localised PCa is evolving rapidly. The 2016 EAU-ESTRO-SIOG Guidelines on PCa summarise the most recent findings and advice for the use in clinical practice. These are the first PCa guidelines endorsed by the European Society for Radiotherapy and Oncology and the International Society of Geriatric Oncology and reflect the multidisciplinary nature of PCa management. A full version is available from the EAU office and online (http://uroweb.org/guideline/prostate-cancer/). Patient summary The 2016 EAU-STRO-IOG Prostate Cancer (PCa) Guidelines present updated information on the diagnosis, and treatment of clinically localised prostate cancer. In Northern and Western Europe, the number of men diagnosed with PCa has been on the rise. This may be due to an increase in opportunistic screening, but other factors may also be involved (eg, diet, sexual behaviour, low exposure to ultraviolet radiation). We propose that men who are potential candidates for screening should be engaged in a discussion with their clinician (also involving their families and caregivers) so that an informed decision may be made as part of an individualised risk-adapted approach

    EAU-EANM-ESTRO-ESUR-SIOG Guidelines on Prostate Cancer. Part II-2020 Update: Treatment of Relapsing and Metastatic Prostate Cancer.

    No full text
    Objective: To present a summary of the 2020 version of the European Association of Urology (EAU)-European Association of Nuclear Medicine (EANM)-European Society for Radiotherapy & Oncology (ESTRO)-European Society of Urogenital Radiology (ESUR)-International Society of Geriatric Oncology (SIOG) guidelines on the treatment of relapsing, metastatic, and castration-resistant prostate cancer (CRPC). Evidence acquisition: The working panel performed a literature review of the new data (2016-2019). The guidelines were updated, and the levels of evidence and/or grades of recommendation were added based on a systematic review of the literature. Evidence synthesis: Prostate-specific membrane antigen positron emission tomography computed tomography scanning has developed an increasingly important role in men with biochemical recurrence after local therapy. Early salvage radiotherapy after radical prostatectomy appears as effective as adjuvant radiotherapy and, in a subset of patients, should be combined with androgen deprivation. New treatments have become available for men with metastatic hormone-sensitive prostate cancer (PCa), nonmetastatic CRPC, and metastatic CRPC, along with a role for local radiotherapy in men with low-volume metastatic hormone-sensitive PCa. Also included is information on quality of life outcomes in men with PCa. Conclusions: The knowledge in the field of advanced and metastatic PCa and CRPC is changing rapidly. The 2020 EAU-EANM-ESTRO-ESUR-SIOG guidelines on PCa summarise the most recent findings and advice for use in clinical practice. These PCa guidelines are first endorsed by the EANM and reflect the multidisciplinary nature of PCa management. A full version is available from the EAU office or online (http://uroweb.org/guideline/prostate-cancer/). Patient summary: This article summarises the guidelines for the treatment of relapsing, metastatic, and castration-resistant prostate cancer. These guidelines are evidence based and guide the clinician in the discussion with the patient on the treatment decisions to be taken. These guidelines are updated every year; this summary spans the 2017-2020 period of new evidence

    EAU-EANM-ESTRO-ESUR-SIOG Guidelines on Prostate Cancer. Part II—2020 Update: Treatment of Relapsing and Metastatic Prostate Cancer

    No full text
    Objective To present a summary of the 2020 version of the European Association of Urology (EAU)-European Association of Nuclear Medicine (EANM)-European Society for Radiotherapy & Oncology (ESTRO)-European Society of Urogenital Radiology (ESUR)-International Society of Geriatric Oncology (SIOG) guidelines on the treatment of relapsing, metastatic, and castration-resistant prostate cancer (CRPC). Evidence acquisition The working panel performed a literature review of the new data (2016–2019). The guidelines were updated, and the levels of evidence and/or grades of recommendation were added based on a systematic review of the literature. Evidence synthesis Prostate-specific membrane antigen positron emission tomography computed tomography scanning has developed an increasingly important role in men with biochemical recurrence after local therapy. Early salvage radiotherapy after radical prostatectomy appears as effective as adjuvant radiotherapy and, in a subset of patients, should be combined with androgen deprivation. New treatments have become available for men with metastatic hormone-sensitive prostate cancer (PCa), nonmetastatic CRPC, and metastatic CRPC, along with a role for local radiotherapy in men with low-volume metastatic hormone-sensitive PCa. Also included is information on quality of life outcomes in men with PCa. Conclusions The knowledge in the field of advanced and metastatic PCa and CRPC is changing rapidly. The 2020 EAU-EANM-ESTRO-ESUR-SIOG guidelines on PCa summarise the most recent findings and advice for use in clinical practice. These PCa guidelines are first endorsed by the EANM and reflect the multidisciplinary nature of PCa management. A full version is available from the EAU office or online (http://uroweb.org/guideline/prostate-cancer/). Patient summary This article summarises the guidelines for the treatment of relapsing, metastatic, and castration-resistant prostate cancer. These guidelines are evidence based and guide the clinician in the discussion with the patient on the treatment decisions to be taken. These guidelines are updated every year; this summary spans the 2017–2020 period of new evidence

    EAU-EANM-ESTRO-ESUR-SIOG Guidelines on Prostate Cancer—2020 Update. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent

    No full text
    Objective To present a summary of the 2020 version of the European Association of Urology (EAU)-European Association of Nuclear Medicine (EANM)-European Society for Radiotherapy and Oncology (ESTRO)-European Society of Urogenital Radiology (ESUR)-International Society of Geriatric Oncology (SIOG) guidelines on screening, diagnosis, and local treatment of clinically localised prostate cancer (PCa). Evidence acquisition The panel performed a literature review of new data, covering the time frame between 2016 and 2020. The guidelines were updated and a strength rating for each recommendation was added based on a systematic review of the evidence. Evidence synthesis A risk-adapted strategy for identifying men who may develop PCa is advised, generally commencing at 50 yr of age and based on individualised life expectancy. Risk-adapted screening should be offered to men at increased risk from the age of 45 yr and to breast cancer susceptibility gene (BRCA) mutation carriers, who have been confirmed to be at risk of early and aggressive disease (mainly BRAC2), from around 40 yr of age. The use of multiparametric magnetic resonance imaging in order to avoid unnecessary biopsies is recommended. When a biopsy is performed, a combination of targeted and systematic biopsies must be offered. There is currently no place for the routine use of tissue-based biomarkers. Whilst prostate-specific membrane antigen positron emission tomography computed tomography is the most sensitive staging procedure, the lack of outcome benefit remains a major limitation. Active surveillance (AS) should always be discussed with low-risk patients, as well as with selected intermediate-risk patients with favourable International Society of Urological Pathology (ISUP) 2 lesions. Local therapies are addressed, as well as the AS journey and the management of persistent prostate-specific antigen after surgery. A strong recommendation to consider moderate hypofractionation in intermediate-risk patients is provided. Patients with cN1 PCa should be offered a local treatment combined with long-term hormonal treatment. Conclusions The evidence in the field of diagnosis, staging, and treatment of localised PCa is evolving rapidly. The 2020 EAU-EANM-ESTRO-ESUR-SIOG guidelines on PCa summarise the most recent findings and advice for their use in clinical practice. These PCa guidelines reflect the multidisciplinary nature of PCa management. Patient summary Updated prostate cancer guidelines are presented, addressing screening, diagnosis, and local treatment with curative intent. These guidelines rely on the available scientific evidence, and new insights will need to be considered and included on a regular basis. In some cases, the supporting evidence for new treatment options is not yet strong enough to provide a recommendation, which is why continuous updating is important. Patients must be fully informed of all relevant options and, together with their treating physicians, decide on the most optimal management for them
    corecore