51 research outputs found

    The reproductive biology of the exploited razor clam, Ensis siliqua, in the Irish Sea

    Get PDF
    Knowledge of the reproductive cycle of a species is a prerequisite for sustainable management of a fishery. The infaunal marine bivalve, Ensis siliqua, is a commercially important species in Europe, and is exploited in many countries, including Ireland, where it is sold by wet weight. Seasonal variations in the reproductive cycle of subtidal razor clams from the Skerries region of the Irish Sea, an important fisheries area, were examined between June 2010 and September 2011 while monitoring weight. Histological examination revealed that the E. siliqua sex-ratio was not different from parity, and no hermaphrodites were observed in the samples collected. In the summer months of 2010 all female clams were either spent or in early development, with just a small percentage of males still spawning. The gonads of both sexes developed over the autumn and winter months of 2010, with the first spawning individuals recorded in January 2011. Spawning peaked in March 2011, but unlike in 2010, spawning continued through June and July with all animals spent in August 2011. The earlier and longer spawning period found in this species in 2011 compared to 2010 may have been due to the colder than normal temperature observed during the winter of 2010 plus the relatively warmer temperatures of Spring 2011, which could have affected the gametogenic development of E. siliqua in the Irish Sea. It was noted that wet weight dropped in the summer months of both years, immediately after the spawning period which may impact on the practicality of fishing for this species during this period. Timing of development and spawning is compared with other sites in the Irish Sea and elsewhere in Europe, including the Iberian Peninsula

    Characterization of protein hydrolysates from blue whiting (Micromesistius poutassou) and their application in beverage fortification

    Get PDF
    peer-reviewedEnzymatic hydrolysis of fish proteins has been employed as a principle method for converting under-utilised fish into valuable products for the pharmaceutical and health food industries. In this study, six commercial enzymes were tested for their ability to make fish protein hydrolysate powders from whole blue whiting. The chemical and functional properties of these powders were compared. The powders all had high solubility (>80%) across a wide pH range in water and their solubility improved further within a vitamin-tea beverage matrix (>85%). Varying degrees of anti-oxidant activities were recorded for the powders using three model systems (DPPH, ferrous chelating and reducing power). This study demonstrates that commercial enzymes are useful for the extraction and alteration of fish protein from a low value source to produce highly digestible, low molecular weight peptide powders that could be used as a fortifying health ingredient, especially in beverages

    Co-occurrence of pathogen assemblages in a keystone species the common cockle Cerastoderma edule on the Irish coast

    Get PDF
    Despite coinfections being recognized as the rule in animal populations, most studies focus on single pathogen systems. Pathogen interaction networks and the drivers of such associations are lacking in disease ecology studies. Common cockle Cerastoderma edule populations are exposed to a great diversity of pathogens, thus making them a good model system to investigate. This study examined the diversity and prevalence of pathogens from different taxonomic levels in wild and fished C. edule on the Irish coast. Potential interactions were tested focussing on abiotic (seawater temperature and salinity) and biotic (cockle size and age, and epiflora on shells) factors. No Microsporidia nor OsHV-1μVar were detected. Single infections with Haplosporidia (37.7%) or Vibrio (25.3%) were more common than two-pathogen coinfected individuals (9.5%), which may more easily succumb to infection. Fished C. edule populations with high cockle densities were more exposed to infections. Higher temperature and presence of epiflora on cockle shells promoted coinfection in warmer months. Low seawater salinity, host condition and proximity to other infected host species influenced coinfection distribution. A positive association between two Minchinia spp. was observed, most likely due to their different pathogenic effect. Findings highlight the major influence that ecological factors have on pathogen interactions and host–pathogen interplay

    Occurrence of OsHV-1 in Crassostrea gigas cultured in Ireland during an exceptionally warm summer. Selection of less susceptible oysters

    Get PDF
    The occurrence of OsHV-1, a herpes virus causing mass mortality in the Pacific oyster Crassostrea gigas was investigated with the aim to select individuals with different susceptibility to the infection. Naïve spat transferred to infected areas and juveniles currently being grown at those sites were analyzed using molecular and histology approaches. The survey period distinguishes itself by very warm temperatures reaching up to 3.5°C above the average. The virus was not detected in the virus free area although a spread of the disease could be expected due to high temperatures. Overall mortality, prevalence of infection and viral load was higher in spat confirming the higher susceptibility in early life stages. OsHV-1 and oyster mortality were detected in naïve spat after 15 days of cohabitation with infected animals. Although, infection was associated with mortality in spat, the high seawater temperatures could also be the direct cause of mortality at the warmest site. One stock of juveniles suffered an event of abnormal mortality that was significantly associated with OsHV-1 infection. Those animals were infected with a previously undescribed microvariant whereas the other stocks were infected with OsHV-1 μVar. Cell lesions due to the infection were observed by histology and true infections were corroborated by in situ hybridization. Survivors from the natural outbreak were exposed to OsHV-1 μVar by intramuscular injection and were compared to naïve animals. The survival rate in previously exposed animals was significantly higher than in naïve oysters. Results derived from this study allowed the selection of animals that might possess interesting characteristics for future analysis on OsHV-1 resistance

    Biotic and abiotic factors influencing haplosporidian species distribution in the cockle Cerastoderma edule in Ireland

    Get PDF
    The Phylum Haplosporidia consists of four genera (Minchinia, Haplosporidium, Urosporidium and Bonamia) that are endoparasitic protists of a wide range of marine invertebrates including commercial bivalve species. Characterization of haplosporidian species remains a challenge due to their patchy spatial and temporal distributions, host-restricted occurrence, and poorly known life cycles. However, they are commonly associated with significant mortality events in bivalves. Due to the recent sporadic mortality events that have occurred in cockles in Europe, the objectives of this study were to determine the diversity, distribution and seasonality of haplosporidian species in Cerastoderma edule populations at several Irish sites. The role of abiotic (temperature, salinity and dissolved oxygen in water) and biotic (cockle size and age) factors as drivers or inhibitors of haplosporidian infection were also assessed. Cockles (n = 998) from the intertidal were sampled from April/July 2018 to April 2019 at three sites with no commercial fishing activity on the south coast (Celtic Sea) and one site on the northeast coast (Irish Sea) with an active commercial fishery. Screening of the cockles by molecular techniques (PCR, Sanger sequencing) and by histopathology was carried out. Two species were identified and confirmed in Irish C. edule for the first time, Minchinia mercenariae -like (14.8%) and Minchinia tapetis (29.6%). Similar to other haplosporidian parasites, the Minchinia spp. detected in our study were present year-round at all sites, except for M. tapetis in Youghal Bay (Celtic Sea). Coinfection of both Minchinia species was only observed in Cork Harbour (Celtic Sea) and Dundalk Bay (Irish Sea), where Minchinia spp. showed a higher presence compared to Youghal Bay and Dungarvan Harbour (Celtic Sea). Moreover, haplosporidians detected with generic primers, were present at all of the sample sites throughout the year but had a higher occurrence during the winter months and were positively correlated with dissolved oxygen. Likewise, smaller and older C.edule seemed to be more vulnerable to the haplosporidian infection. Furthermore, haplosporidian distribution displayed spatial variability between and within sample sites, with the highest presence being observed in cockles at one of the commercially fished Dundalk beds, while the lowest presence was observed in cockles at the second Dundalk bed that was more influenced by freshwater runoff when the tide was out. Findings from this study provide additional information on the distribution and seasonal presence of novel haplosporidian species and their potential abiotic and biotic drivers/inhibitors of infection

    Assessment of the effects of sulfated polysaccharides extracted from the red seaweed Irish moss Chondrus crispus on the immune-stimulant activity in mussels Mytilus spp

    Get PDF
    Seaweeds contain a number of health enhancing and antimicrobial bioactive compounds including sulfated polysaccharides (SP). In the present study, SP extracted from a European red seaweed Irish moss Chondrus crispus was chemically analyzed, SP content extracted and the immune-response effect on wild Irish mussels Mytilus spp. investigated for the first time. A high percent yield of SP was extracted from C. crispus and the immune-stimulant activity of SP was assessed in a laboratory trial with mussels exposed to three different treatments of low (10 μg mL−1), medium (20 μg mL−1) and high (50 μg mL−1) SP dose concentrations and a control mussel group with no exposure to SP. An initial mussel sample was processed prior to the trial commencing and mussels were subsequently sampled on Days 1, 2, 3, 4, 7, and 10 post SP exposure. Both cell, humoral and immune related gene responses including haemocyte cell viability, haemocyte counts, lysozyme activity and expression of immune related genes (defensin, mytimycin and lysozyme mRNA) were assessed. No mussel mortalities were observed in either the treated or non-treated groups. Mussels exposed with SP showed an increase in haemocyte cell viability and the total number of haemocytes compared to control mussels. Lysozyme activity was also higher in treated mussels. Additionally, up-regulated expression of defensin, mytimycin and lysozyme mRNA was observed in SP treated mussels shortly after exposure (on Days 1, 2, and 3) to SP. These results indicate that a high quality yield of SP can be readily extracted from C. crispus and more importantly based on the animal model used in this study, SP extracted from C. crispus can rapidly induce health enhancing activities in Mytilus spp. at a cellular, humoral and molecular level and with a prolonged effect up to ten days post treatment

    Role of the intertidal predatory shore crab Carcinus maenas in transmission dynamics of ostreid herpesvirus-1 microvariant

    Get PDF
    Ostreid herpesvirus-1 microVar (OsHV-1 µVar) has been responsible for significant mortalities globally in the Pacific oyster Crassostrea gigas. While the impact of this virus on the Pacific oyster has been significant, this pathogen may have wider ecosystem consequences. It has not been definitively determined how the virus is sustaining itself in the marine environment and whether other species are susceptible. The shore crab Carcinus maenas is a mobile predator and scavenger of C. gigas, commonly found at Pacific oyster culture sites. The aim of this study was to investigate the role of the crab in viral maintenance and transmission to the Pacific oyster. A field trial took place over 1 summer at different shore heights at 2 Irish Pacific oyster culture sites that are endemic for OsHV-1 µVar. Infection of OsHV-1 µVar in tissues of C. maenas at both shore heights of both sites was detected by polymerase chain reaction (PCR), quantitative PCR (qPCR), in situ hybridization and direct Sanger sequencing. In addition, a laboratory trial demonstrated that transmission of the virus could occur to naïve C. gigas within 4 d, from C. maenas previously exposed to the virus in the wild. These findings provide some insight into the possibility that the virus can be transmitted through marine food webs. The results also suggest viral plasticity in the hosts required by the virus and potential impacts on a range of crustacean species with wider ecosystem impacts if transmission to other species occurs

    Mobilisation of data to stakeholder communities. Bridging the research-practice gap using a commercial shellfish species model

    Get PDF
    Knowledge mobilisation is required to “bridge the gap” between research, policy and practice. This activity is dependent on the amount, richness and quality of the data published. To understand the impact of a changing climate on commercial species, stakeholder communities require better knowledge of their past and current situations. The common cockle (Cerastoderma edule) is an excellent model species for this type of analysis, as it is well-studied due to its cultural, commercial and ecological significance in west Europe. Recently, C. edule harvests have decreased, coinciding with frequent mass mortalities, due to factors such as a changing climate and diseases. In this study, macro and micro level marine historical ecology techniques were used to create datasets on topics including: cockle abundance, spawning duration and harvest levels, as well as the ecological factors impacting those cockle populations. These data were correlated with changing climate and the Atlantic Multidecadal Oscillation (AMO) index to assess if they are drivers of cockle abundance and harvesting. The analyses identified the key stakeholder communities involved in cockle research and data acquisition. It highlighted that data collection was sporadic and lacking in cross-national/stakeholder community coordination. A major finding was that local variability in cockle populations is influenced by biotic (parasites) and abiotic (temperature, legislation and harvesting) factors, and at a global scale by climate (AMO Index). This comprehensive study provided an insight into the European cockle fishery but also highlights the need to identify the type of data required, the importance of standardised monitoring, and dissemination efforts, taking into account the knowledge, source, and audience. These factors are key elements that will be highly beneficial not only to the cockle stakeholder communities but to other commercial species

    Neutral red retention time assay in determination of toxicity of nanoparticles

    Get PDF
    The neutral red retention time (NRRT) assay is useful for detecting decreased lysosomal membrane stability in haemocytes sampled from bivalves, a phenomenon often associated with exposure to environmental pollutants including nanomaterials. Bivalves are popular sentinel species in ecotoxicology and use of NRRT in study of species in the genus Mytilus is widespread in environmental monitoring. The NRRT assay has been used as an in vivo test for toxicity of carbon nanoparticles (Moore MN, Readman JAJ, Readman JW, Lowe DM, Frickers PE, Beesley A. 2009. Lysosomal cytotoxicity of carbon nanoparticles in cells of the molluscan immune system: An in vivo study. Nanotoxicology. 3 (1), 40-45). We here report application of this assay adapted to a microtitre plate format to a panel of metal and metal oxide nanoparticles (2 ppm). This showed that copper, chromium and cobalt nanoparticles are toxic by this criterion while gold and titanium nanoparticles are not. As the former three nanoparticles are often reported to be cytotoxic while the latter two are thought to be non-cytotoxic, these data support use of NRRT as a general in vitro assay in nanotoxicology

    Short-term losses and long-term gains: the non-native species Austrominius modestus in Lough Hyne Marine Nature Reserve

    Get PDF
    The non-native barnacle species Austrominius modestus was first recorded in Ireland, close to Lough Hyne marine nature reserve in 1957. This species was not recorded inside the Lough until 1980, but by 2001 was the dominant intertidal barnacle within the reserve. It has been suggested that increases in the abundance of this species at other locations in Europe may be linked to increasing sea surface temperatures, and that A. modestus is an “ecological sleeper”. Despite an overall trend for increasing sea surface temperatures, this long term warming is punctuated by extreme events such as severely cold winters. A. modestus is warm water adapted, and has been recorded to decrease in abundance following cold winters. The winters of 2009/2010 and 2010/2011 were amongst the coldest recorded in Ireland in past decades. In the present study, higher levels of mortality were recorded for A. modestus than native barnacle species in Lough Hyne following these cold winters. Additionally, this species was recorded at lower abundances at the majority of sites surveyed in Lough Hyne in 2011 compared with 2009. Despite this, A. modestus remains the dominant barnacle species in the Lough and monitoring the recruitment of intertidal barnacles within Lough Hyne during 2014e2015 revealed that A. modestus was the most abundant recruit at study sites, both in removal plots and in the pre-existing community. The year-round breeding of A. modestus in addition to the closed nature of the Lough promotes A. modestus within the reserve. Despite this, native barnacle species continue to persist in Lough Hyne, though generally at low abundances, with the exception of exposed locations such as the Rapids and Bullock Island where natives outnumber A. modestus. The future intertidal barnacle community within the Lough is likely to be dominated by A. modestus with Chthamalus montagui and C. stellatus being abundant at sites which are not suitable for A. modestus. While the consequences of this are unknown, it is possible that the presence of A. modestus may alter trophic interactions and energy flow within the reserve
    corecore