62 research outputs found

    Molecular Evolution and Functional Diversification of Replication Protein A1 in Plants

    Get PDF
    Replication protein A (RPA) is a heterotrimeric, single-stranded DNA binding complex required for eukaryotic DNA replication, repair, and recombination. RPA is composed of three subunits, RPA1, RPA2, and RPA3. In contrast to single RPA subunit genes generally found in animals and yeast, plants encode multiple paralogs of RPA subunits, suggesting subfunctionalization. Genetic analysis demonstrates that five Arabidopsis thaliana RPA1 paralogs (RPA1A to RPA1E) have unique and overlapping functions in DNA replication, repair, and meiosis. We hypothesize here that RPA1 subfunctionalities will be reflected in major structural and sequence differences among the paralogs. To address this, we analyzed amino acid and nucleotide sequences of RPA1 paralogs from 25 complete genomes representing a wide spectrum of plants and unicellular green algae. We find here that the plant RPA1 gene family is divided into three general groups termed RPA1A, RPA1B, and RPA1C, which likely arose from two progenitor groups in unicellular green algae. In the family Brassicaceae the RPA1B and RPA1C groups have further expanded to include two unique sub-functional paralogs RPA1D and RPA1E, respectively. In addition, RPA1 groups have unique domains, motifs, cis-elements, gene expression profiles, and pattern of conservation that are consistent with proposed functions in monocot and dicot species, including a novel C-terminal zinc-finger domain found only in plant RPA1C-like sequences. These results allow for improved prediction of RPA1 subunit functions in newly sequenced plant genomes, and potentially provide a unique molecular tool to improve classification of Brassicaceae species

    Genetic analysis of the Replication Protein A large subunit family in Arabidopsis reveals unique and overlapping roles in DNA repair, meiosis and DNA replication

    Get PDF
    Replication Protein A (RPA) is a heterotrimeric protein complex that binds single-stranded DNA. In plants, multiple genes encode the three RPA subunits (RPA1, RPA2 and RPA3), including five RPA1-like genes in Arabidopsis. Phylogenetic analysis suggests two distinct groups composed of RPA1A, RPA1C, RPA1E (ACE group) and RPA1B, RPA1D (BD group). ACE-group members are transcriptionally induced by ionizing radiation, while BD-group members show higher basal transcription and are not induced by ionizing radiation. Analysis of rpa1 T-DNA insertion mutants demonstrates that although each mutant line is likely null, all mutant lines are viable and display normal vegetative growth. The rpa1c and rpa1e single mutants however display hypersensitivity to ionizing radiation, and combination of rpa1c and rpa1e results in additive hypersensitivity to a variety of DNA damaging agents. Combination of the partially sterile rpa1a with rpa1c results in complete sterility, incomplete synapsis and meiotic chromosome fragmentation, suggesting an early role for RPA1C in promoting homologous recombination. Combination of either rpa1c and/or rpa1e with atr revealed additive hypersensitivity phenotypes consistent with each functioning in unique repair pathways. In contrast, rpa1b rpa1d double mutant plants display slow growth and developmental defects under non-damaging conditions. We show these defects in the rpa1b rpa1d mutant are likely the result of defective DNA replication leading to reduction in cell division

    Diversity of the Brain Dystrophin-Glycoprotein Complex

    Get PDF
    Duchenne muscular dystrophy (DMD), the most common inherited neuromuscular disorder, is characterized by progressive muscle wasting and weakness. One third of Duchenne patients suffer a moderate to severe, nonprogressive form of mental retardation. Mutations in the DMD gene are thought to be responsible, with the shorter isoforms of dystrophin implicated in its molecular brain pathogenesis. It is becoming clear that region-specific variations in dystrophin isoforms delegate the composition of the dystrophin-glycoprotein complex in brain, and hence, the function of the specific membrane assembly. Here we summarize the recent advances in the understanding of brain dystrophin, dystrophin-related proteins and dystrophin-associated proteins

    Deficiency in Cardiac Dystrophin Affects the Abundance of the α-/β-Dystroglycan Complex

    Get PDF
    Although Duchenne muscular dystrophy is primarily categorised as a skeletal muscle disease, deficiency in the membrane cytoskeletal protein dystrophin also affects the heart. The central transsarcolemmal linker between the actin membrane cytoskeleton and the extracellular matrix is represented by the dystrophin-associated dystroglycans. Chemical cross-linking analysis revealed no significant differences in the dimeric status of the α-/β-dystroglycan subcomplex in the dystrophic mdx heart as compared to normal cardiac tissue. In analogy to skeletal muscle fibres, heart muscle also exhibited a greatly reduced abundance of both dystroglycans in dystrophin-deficient cells. Immunoblotting demonstrated that the degree of reduction in α-dystroglycan is more pronounced in matured mdx skeletal muscle as contrasted to the mdx heart. The fact that the deficiency in dystrophin triggers a similar pathobiochemical response in both types of muscle suggests that the cardiomyopathic complications observed in x-linked muscular dystrophy might be initiated by the loss of the dystrophin-associated surface glycoprotein complex

    High atomic weight, high-energy radiation (HZE) induces transcriptional responses shared with conventional stresses in addition to a core "DSB" response specific to clastogenic treatments.

    Get PDF
    Plants exhibit a robust transcriptional response to gamma radiation which includes the induction of transcripts required for homologous recombination and the suppression of transcripts that promote cell cycle progression. Various DNA damaging agents induce different spectra of DNA damage as well as "collateral" damage to other cellular components and therefore are not expected to provoke identical responses by the cell. Here we study the effects of two different types of ionizing radiation (IR) treatment, HZE (1 GeV Fe(26+) high mass, high charge, and high energy relativistic particles) and gamma photons, on the transcriptome of Arabidopsis thaliana seedlings. Both types of IR induce small clusters of radicals that can result in the formation of double strand breaks (DSBs), but HZE also produces linear arrays of extremely clustered damage. We performed these experiments across a range of time points (1.5-24 h after irradiation) in both wild-type plants and in mutants defective in the DSB-sensing protein kinase ATM. The two types of IR exhibit a shared double strand break-repair-related damage response, although they differ slightly in the timing, degree, and ATM-dependence of the response. The ATM-dependent, DNA metabolism-related transcripts of the "DSB response" were also induced by other DNA damaging agents, but were not induced by conventional stresses. Both Gamma and HZE irradiation induced, at 24 h post-irradiation, ATM-dependent transcripts associated with a variety of conventional stresses; these were overrepresented for pathogen response, rather than DNA metabolism. In contrast, only HZE-irradiated plants, at 1.5 h after irradiation, exhibited an additional and very extensive transcriptional response, shared with plants experiencing "extended night." This response was not apparent in gamma-irradiated plants

    Brain dystrophin-glycoprotein complex: Persistent expression of beta-dystroglycan, impaired oligomerization of Dp71 and up-regulation of utrophins in animal models of muscular dystrophy

    Get PDF
    BACKGROUND: Aside from muscle, brain is also a major expression site for dystrophin, the protein whose abnormal expression is responsible for Duchenne muscular dystrophy. Cognitive impairments are frequently associated with this genetic disease, we therefore studied the fate of brain and skeletal muscle dystrophins and dystroglycans in dystrophic animal models. RESULTS: All dystrophin-associated glycoproteins investigated were reduced in dystrophic muscle fibres. In Dp427-deficient mdx brain and Dp71-deficient mdx-3cv brain, the expression of α-dystroglycan and laminin was reduced, utrophin isoforms were up-regulated and β-dystroglycan was not affected. Immunofluorescence localization of β-dystroglycan in comparison with glial, endothelial and neuronal cell markers revealed co-localization of von Willebrand factor with β-dystroglycan. Its expression at the endothelial-glial interface was preserved in dystrophin isoform-deficient brain from mdx and mdx-3cv mice. In addition, chemical crosslinking revealed that the Dp71 isoform exists in mdx brain predominantly as a monomer. CONCLUSIONS: This suggests an association of β-dystroglycan with membranes at the vascular-glial interface in the forebrain. In contrast to dystrophic skeletal muscle fibres, dystrophin deficiency does not trigger a reduction of all dystroglycans in the brain, and utrophins may partially compensate for the lack of brain dystrophins. Abnormal oligomerization of the dystrophin isoform Dp71 might be involved in the pathophysiological mechanisms underlying abnormal brain functions

    Building an Authentic Novice Programming Lab Environment

    Get PDF
    As computer science becomes increasingly popular and classes become larger, there is an ever-increasing demand on course coordinators' time. As well as teaching classes, running labs, preparing exams, and providing feedback to students on their work throughout the year, course coordinators are required to keep their courses updated in order to prepare their students in a rapidly changing and evolving industry. As computer scientists, and as programmers, automation stands out as a potential solution. Automating the correction of labs and exams would free the course coordinators’ time, allowing them to focus on improving the course in other ways. VPL, or Virtual Programming Lab, is a plugin for a Learning Management System, such Moodle, that provides automation of this nature, by using shell scripts to assess student code and provide automated feedback. The VPL system includes a web-based editor embedded in Moodle that students use to write their code. Our concern is that VPL does not provide a sufficiently authenticprogramming experience. With this in mind, we have created MULE, a browser-based desktop environment in which students can view course assignments, write, compile and run their code, while maintaining the advantages provided by VPL such as instant feedback
    corecore