2 research outputs found

    Gut dysbiosis during influenza contributes to pulmonary pneumococcal superinfection through altered short-chain fatty acid production

    Get PDF
    Secondary bacterial infections often complicate viral respiratory infections. We hypothesize that perturbation of the gut microbiota during influenza A virus (IAV) infection might favor respiratory bacterial superinfection. Sublethal infection with influenza transiently alters the composition and fermentative activity of the gut microbiota in mice. These changes are attributed in part to reduced food consumption. Fecal transfer experiments demonstrate that the IAV-conditioned microbiota compromises lung defenses against pneumococcal infection. In mechanistic terms, reduced production of the predominant short-chain fatty acid (SCFA) acetate affects the bactericidal activity of alveolar macrophages. Following treatment with acetate, mice colonized with the IAV-conditioned microbiota display reduced bacterial loads. In the context of influenza infection, acetate supplementation reduces, in a free fatty acid receptor 2 (FFAR2)-dependent manner, local and systemic bacterial loads. This translates into reduced lung pathology and improved survival rates of double-infected mice. Lastly, pharmacological activation of the SCFA receptor FFAR2 during influenza reduces bacterial superinfection

    Influenza Virus Infection Impairs the Gut’s Barrier Properties and Favors Secondary Enteric Bacterial Infection through Reduced Production of Short-Chain Fatty Acids

    No full text
    International audienceAlong with respiratory tract disease per se, viral respiratory infections can also cause extrapulmonary complications with a potentially critical impact on health. In the present study, we used an experimental model of influenza A virus (IAV) infection to investigate the nature and outcome of the associated gut disorders. In IAV-infected mice, the signs of intestinal injury and inflammation, altered gene expression, and compromised intestinal barrier functions peaked on day 7 postinfection. As a likely result of bacterial component translocation, gene expression of inflammatory markers was upregulated in the liver. These changes occurred concomitantly with an alteration of the composition of the gut microbiota and with a decreased production of the fermentative, gut microbiota-derived products short-chain fatty acids (SCFAs). Gut inflammation and barrier dysfunction during influenza were not attributed to reduced food consumption, which caused in part gut dysbiosis. Treatment of IAV-infected mice with SCFAs was associated with an enhancement of intestinal barrier properties, as assessed by a reduction in the translocation of dextran and a decrease in inflammatory gene expression in the liver. Lastly, SCFA supplementation during influenza tended to reduce the translocation of the enteric pathogen Salmonella enterica serovar Typhimurium and to enhance the survival of doubly infected animals. Collectively, influenza virus infection can remotely impair the gut's barrier properties and trigger secondary enteric infections. The latter phenomenon can be partially countered by SCFA supplementation
    corecore