39 research outputs found

    A Scalable Test Problem Generator for Sequential Transfer Optimization

    Full text link
    Sequential transfer optimization (STO), which aims to improve optimization performance by exploiting knowledge captured from previously-solved optimization tasks stored in a database, has been gaining increasing research attention in recent years. However, despite significant advancements in algorithm design, the test problems in STO are not well designed. Oftentimes, they are either randomly assembled by other benchmark functions that have identical optima or are generated from practical problems that exhibit limited variations. The relationships between the optimal solutions of source and target tasks in these problems are manually configured and thus monotonous, limiting their ability to represent the diverse relationships of real-world problems. Consequently, the promising results achieved by many algorithms on these problems are highly biased and difficult to be generalized to other problems. In light of this, we first introduce a few rudimentary concepts for characterizing STO problems (STOPs) and present an important problem feature overlooked in previous studies, namely similarity distribution, which quantitatively delineates the relationship between the optima of source and target tasks. Then, we propose general design guidelines and a problem generator with superior extendibility. Specifically, the similarity distribution of a problem can be systematically customized by modifying a parameterized density function, enabling a broad spectrum of representation for the diverse similarity relationships of real-world problems. Lastly, a benchmark suite with 12 individual STOPs is developed using the proposed generator, which can serve as an arena for comparing different STO algorithms. The source code of the benchmark suite is available at https://github.com/XmingHsueh/STOP

    Stimuli-responsive controlled-release system using quadruplex DNA-capped silica nanocontainers

    Get PDF
    A novel proton-fueled molecular gate-like delivery system has been constructed for controlled cargo release using i-motif quadruplex DNA as caps onto pore outlets of mesoporous silica nanoparticles. Start from simple conformation changes, the i-motif DNA cap can open and close the pore system in smart response to pH stimulus. Importantly, the opening/closing and delivery protocol is highly reversible and a partial cargo delivery can be easily controlled at will. A pH-switchable nanoreactor has also been developed to validate the potential of our system for on-demand molecular transport. This proof of concept might open the door to a new generation of carrier materials and could also provide a general route to use other functional nucleic acids/peptide nucleic acids as capping agents in the fields of versatile controlled delivery nanodevices

    Apoptotic Engulfment Pathway and Schizophrenia

    Get PDF
    Background: Apoptosis has been speculated to be involved in schizophrenia. In a previously study, we reported the association of the MEGF10 gene with the disease. In this study, we followed the apoptotic engulfment pathway involving the MEGF10, GULP1, ABCA1 and ABCA7 genes and tested their association with the disease. Methodology/Principal Findings: Ten, eleven and five SNPs were genotyped in the GULP1, ABCA1 and ABCA7 genes respectively for the ISHDSF and ICCSS samples. In all 3 genes, we observed nominally significant associations. Rs2004888 at GULP1 was significant in both ISHDSF and ICCSS samples (p = 0.0083 and 0.0437 respectively). We sought replication in independent samples for this marker and found highly significant association (p = 0.0003) in 3 Caucasian replication samples. But it was not significant in the 2 Chinese replication samples. In addition, we found a significant 2-marker (rs2242436 * rs3858075) interaction between the ABCA1 and ABCA7 genes in the ISHDSF sample (p = 0.0022) and a 3-marker interaction (rs246896 * rs4522565 * rs3858075) amongst the MEGF10, GULP1 and ABCA1 genes in the ICCSS sample (p = 0.0120). Rs3858075 in the ABCA1 gene was involved in both 2- and 3-marker interactions in the two samples. Conclusions/Significance: From these data, we concluded that the GULP1 gene and the apoptotic engulfment pathway are involved in schizophrenia in subjects of European ancestry and multiple genes in the pathway may interactively increase the risks to the disease. © 2009 Chen et al

    Centrosome-centric view of asymmetric stem cell division

    No full text
    © 2021 The Authors. The centrosome is a unique organelle: the semi-conservative nature of its duplication generates an inherent asymmetry between 'mother' and 'daughter' centrosomes, which differ in their age. This asymmetry has captivated many cell biologists, but its meaning has remained enigmatic. In the last two decades, many stem cell types have been shown to display stereotypical inheritance of either the mother or daughter centrosome. These observations have led to speculation that the mother and daughter centrosomes bear distinct information, contributing to differential cell fates during asymmetric cell divisions. This review summarizes recent progress and discusses how centrosome asymmetry may promote asymmetric fates during stem cell divisions

    A massive transformation mechanism in Ti-48Al alloy

    No full text
    The structure transformation mechanism in Ti-48Al(mole percent) intermetallic alloy was investigated when it was cooled rapidly from singleαphase region. The results showed that the massiveγwas obtained by anα→γmassive transformation during the quenching process in this alloy. A large number of defects, such as anti-phase boundaries (APBs), stacking faults, microtwins and dislocations, were observed to be within the massiveγ.Studies indicate that the massiveγnucleates with coherent interface and grows in a diffusion controlled ledge growth mechanism

    Two-stage assortative mating for multi-objective multifactorial evolutionary optimization

    No full text
    Yang C, Ding J, Tan KC, Jin Y. Two-stage assortative mating for multi-objective multifactorial evolutionary optimization. In: 2017 IEEE 56th Annual Conference on Decision and Control (CDC). IEEE; 2017: 76-81.A multi-objective multifactorial evolutionary algorithm has been proposed recently to address multi-objective multi-tasks optimization simultaneously. However, the approach only focuses on the improvement of algorithm convergence via knowledge transfer among the optimization tasks. To enhance the performance of both diversity and convergence which are important for evolutionary multi-objective optimization, this paper proposes a two-stage assortative mating method for multi-objective multifactorial evolutionary optimization. In the proposed algorithm, decision variables are first divided into two types using a decision variable clustering method: diversity-related variables and convergence-related variables. The two types of variables then undergo assortative mating with different parameters independently when offspring are generated. Experimental results on a variety of test instances show that the proposed algorithm is highly competitive as compared with existing multi-task and single-task algorithms

    In vitro behavior of human osteoblast-like cells (SaOS2) cultured on surface modified titanium and titanium–zirconium alloy

    Full text link
    In this study, titanium (Ti) and titanium-zirconium (TiZr) alloy samples fabricated through powder metallurgy were surface modified by alkali-heat treatment and calcium (Ca)-ion-deposition. The alteration of the surface morphology and the chemistry of the Ti and TiZr after surface modification were examined. The bioactivity of the Ti and TiZr alloys after the surface modification was demonstrated. Subsequently, the cytocompatibility of the surface modified Ti and TiZr was evaluated via in vitro cell culture using human osteoblast-like cells (SaOS2). The cellular attachment, adhesion and proliferation after cell culture for 14 days were characterized by scanning electron microscopy (SEM) and MTT assay. The relationship between surface morphology and chemical composition of the surface modified Ti and TiZr and cellular responses was investigated. Results indicated that the surface-modified Ti and TiZr alloys exhibited excellent in vitro cytocompatibility together with satisfactory bioactivity. Since osteoblast adhesion and proliferation are essential prerequisites for a successful implant in vivo, these results provide evidence that Ti and TiZr alloys after appropriate surface modification are promising biomaterials for hard tissue replacement

    Manufacturing of graded titanium scaffolds using a novel space holder technique

    Get PDF
    To optimize both the mechanical and biological properties of titanium for biomedical implants, a highly flexible powder metallurgy approach is proposed to generate porous scaffolds with graded porosities and pore sizes. Sugar pellets acting as space holders were compacted with titanium powder and then removed by dissolution in water before sintering. The morphology, pore structure, porosity and pore interconnectivity were observed by optical microscopy and SEM. The results show that the porous titanium has porosity levels and pore size gradients consistent with their design with gradual and smooth transitions at the interfaces between regions of differing porosities and/or pore sizes. Meanwhile, the porous titanium has high interconnectivity between pores and highly spherical pore shapes. In this article we show that this powder metallurgy processing technique, employing the novel sugar pellets as space-holders, can generate porous titanium foams with well-controlled graded porosities and pore sizes. This method has excellent potential for producing porous titanium structures for hard tissue engineering applications

    Lycorine transfersomes modified with cell-penetrating peptides for topical treatment of cutaneous squamous cell carcinoma

    No full text
    Abstract Background Topical anticancer drugs offer a potential therapeutic modality with high compliance for treating cutaneous squamous cell carcinoma (cSCC). However, the existing topical treatments for cSCC are associated with limited penetrating ability to achieve the desired outcome. Therefore, there remains an urgent requirement to develop drugs with efficient anticancer activity suitable for treating cSCC and to overcome the skin physiological barrier to improve the efficiency of drug delivery to the tumor. Results We introduced lycorine (LR) into the topical treatment for cSCC and developed a cell-penetrating peptide (CPP)-modified cationic transfersome gel loaded with lycorine-oleic acid ionic complex (LR-OA) (LR@DTFs-CPP Gel) and investigated its topical therapeutic effects on cSCC. The anti-cSCC effects of LR and skin penetration of LR-OA transfersomes were confirmed. Simultaneously, cationic lipids and modification of R5H3 peptide of the transfersomes further enhanced the permeability of the skin and tumor as well as the effective delivery of LR to tumor cells. Conclusions Topical treatment of cSCC-xenografted nude mice with LR@DTFs-CPP Gel showed effective anticancer properties with high safety. This novel formulation provides novel insights into the treatment and pathogenesis of cSCC
    corecore