105 research outputs found

    Integrated all-optical logic discriminators based on plasmonic bandgap engineering

    Full text link
    Optical computing uses photons as information carriers, opening up the possibility for ultrahigh-speed and ultrawide-band information processing. Integrated all-optical logic devices are indispensible core components of optical computing systems. However, up to now, little experimental progress has been made in nanoscale all-optical logic discriminators, which have the function of discriminating and encoding incident light signals according to wavelength. Here, we report a strategy to realize a nanoscale all-optical logic discriminator based on plasmonic bandgap engineering in a planar plasmonic microstructure. Light signals falling within different operating wavelength ranges are differentiated and endowed with different logic state encodings. Compared with values previously reported, the operating bandwidth is enlarged by one order of magnitude. Also the SPP light source is integrated with the logic device while retaining its ultracompact size. This opens up a way to construct on-chip all-optical information processors and artificial intelligence systems.Comment: 4 figures 201

    Ultrawide-band Unidirectional Surface Plasmon Polariton Launchers

    Full text link
    Plasmonic devices and circuits, bridging the gap between integrated photonic and microelectronic technology, are promising candidates to realize on-chip ultrawide-band and ultrahigh-speed information processing. Unfortunately, the wideband surface plasmon source, one of the most important core components of integrated plasmonic circuits, is still unavailable up to now. This has seriously restricted the practical applications of plasmonic circuits. Here, we report an ultrawide-band unidirectional surface plasmon polariton launcher with high launching efficiency ratio and large extinction ratio, realized by combining plasmonic bandgap engineering and linear interference effect. This device offers excellent performances over an ultrabroad wavelength range from 690 to 900 nm, together with a high average launching efficiency ratio of 1.25, large average extinction ratio of 30 dB, and ultracompact lateral dimension of less than 4 um. Compared with previous reports, the operating bandwidth is enlarged 210 folds, while the largest launching efficiency ratio, largest extinction ratio, and small feature size are maintained simultaneously. This provides a strategy for constructing on-chip surface plasmon source, and also paving the way for the study of integrated plasmonic circuits.Comment: 4 figure

    Silencing miR-146a-5p protects against injury-induced osteoarthritis in mice

    Get PDF
    Osteoarthritis (OA), the most prevalent joint disease and the leading cause of disability, remains an incurable disease largely because the etiology and pathogenesis underlying this degenerative process are poorly understood. Low-grade inflammation within joints is a well-established factor that disturbs joint homeostasis and leads to an imbalance between anabolic and catabolic processes in articular cartilage; however, the complexity of the network between inflammatory factors that often involves positive and negative feedback loops makes current anti-cytokine therapy ineffective. MicroRNAs (miRNAs) have emerged as key regulators to control inflammation, and aberrant miRNAs expression has recently been linked to OA pathophysiology. In the present study, we characterized transcriptomic profiles of miRNAs in primary murine articular chondrocytes in response to a proinflammatory cytokine, IL-1β, and identifie

    Editorial: Optical hyperbolic metamaterials

    Get PDF

    Effects of Music Training on the Auditory Working Memory of Chinese-Speaking School-Aged Children : A Longitudinal Intervention Study

    Get PDF
    Music expertise is known to be beneficial for cognitive function and development. In this study, we conducted 1-year music training for school children (n = 123; 7–11 years of age before training) in China. The children were assigned to music or second-language after-class training groups. A passive control group was included. We aimed to investigate whether music training could facilitate working memory (WM) development compared to second-language training and no training. Before and after the training, auditory WM was measured via a digit span (DS) task, together with the vocabulary and block tests of the Wechsler Intelligence Scale for Child IV (WISC-IV). The results of the DS task revealed superior development in the music group compared to the other groups. However, further analysis of DS forward and backward tasks indicated that the performance of the three training/non-training groups only differed significantly in DS backward scores, but not in the DS forward scores. We conclude that music training may benefit the central executive system of WM, as reflected by the DS backward task.Peer reviewe

    Small RNA zippers lock miRNA molecules and block miRNA function in mammalian cells.

    Get PDF
    MicroRNAs (miRNAs) loss-of-function phenotypes are mainly induced by chemically modified antisense oligonucleotides. Here we develop an alternative inhibitor for miRNAs, termed \u27small RNA zipper\u27. It is designed to connect miRNA molecules end to end, forming a DNA-RNA duplex through a complementary interaction with high affinity, high specificity and high stability. Two miRNAs, miR-221 and miR-17, are tested in human breast cancer cell lines, demonstrating the 70∼90% knockdown of miRNA levels by 30-50 nM small RNA zippers. The miR-221 zipper shows capability in rescuing the expression of target genes of miR-221 and reversing the oncogenic function of miR-221 in breast cancer cells. In addition, we demonstrate that the miR-221 zipper attenuates doxorubicin resistance with higher efficiency than anti-miR-221 in human breast cancer cells. Taken together, small RNA zippers are a miRNA inhibitor, which can be used to induce miRNA loss-of-function phenotypes and validate miRNA target genes

    Improved Auditory Function Caused by Music Versus Foreign Language Training at School Age : Is There a Difference?

    Get PDF
    In adults, music and speech share many neurocognitive functions, but how do they interact in a developing brain? We compared the effects of music and foreign language training on auditory neurocognition in Chinese children aged 8-11 years. We delivered group-based training programs in music and foreign language using a randomized controlled trial. A passive control group was also included. Before and after these year-long extracurricular programs, auditory event-related potentials were recorded (n = 123 and 85 before and after the program, respectively). Through these recordings, we probed early auditory predictive brain processes. To our surprise, the language program facilitated the children's early auditory predictive brain processes significantly more than did the music program. This facilitation was most evident in pitch encoding when the experimental paradigm was musically relevant. When these processes were probed by a paradigm more focused on basic sound features, we found early predictive pitch encoding to be facilitated by music training. Thus, a foreign language program is able to foster auditory and music neurocognition, at least in tonal language speakers, in a manner comparable to that by a music program. Our results support the tight coupling of musical and linguistic brain functions also in the developing brain.Peer reviewe
    • …
    corecore