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Editorial on the Research Topic

Optical hyperbolic metamaterials

Optical metamaterials, artificial materials composed of engineered subwavelength

structures, provide a powerful platform for manipulating light (Zheludev and Kivshar,

2012). The existence of negative refraction and superlensing beyond the diffraction limit

was initially realized with left-handed metamaterials (Smith et al., 2004). Some other

intriguing optical phenomena have been continuously discovered in various

metamaterials, such as invisibility cloaking, optical tunneling, and light trapping

(Engheta, 2007; Soukoulis and Wegener, 2010; Ni et al.; Lu et al.). As an important

class of anisotropic metamaterials with a hyperbolic iso-frequency contour, hyperbolic

metamaterials (HMMs) have attracted significant attention due to their unique ability to

control the light-matter interaction. Tailoring the hyperbolic dispersion offers an enticing

route to flexibly control the light propagation and to produce collimation, beam splitting,

robust transmission, and enhanced Purcell effect (Poddubny et al., 2013). Thus far,

miniaturization, integrability, and low loss are the main pursuits of anisotropic

metamaterials. Hyperbolic metasurface, the 2D version of ultrathin hyperbolic

metamaterials, has a planar structure that is easier to integrate and is featured with a

smaller loss (High et al., 2015; Gomez-Diaz and Alu, 2016; Guo et al.). Especially since 2D

materials can support the propagation of hyperbolic phonon-polaritons or surface

plasmons with low loss, hyperbolic 2D materials can be exploited to facilitate the

design of low-loss hyperbolic metasurfaces and thus greatly promotes the

development of planar optics, namely to mold the flow of light in a plane (Lin et al.,

2017; Ma et al., 2018). Very recently, with the emergence of twist-optics, the interlayer

rotation of 2D materials/metasurfaces provides another feasible route to explore the

topological phase transition of isofrequency contours and has gained significant interest

because of its promising potential in the design of advanced active devices (Hu et al., 2020;

Shen et al., 2020).
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This Research Topic aims to systematically reflect on the

latest research progress of the anisotropic metamaterials/

metasurfaces and promotes the development of metamaterials

in new directions. The scope of the Research Topic includes the

design, fabrication, and measurement of photonic anisotropic

metamaterials/metasurfaces, the topological transition of

polaritonic isofrequency contours, and their applications.

This Research Topic includes five original research articles

covering fundamental physics and device applications of

anisotropic metamaterials/metasurfaces. From the theoretical

side, Xu et al. reported a novel design of W-shaped resonators

to realize broadband reflective linear and circular polarization

conversions (doi: 10.3389/fmats.2022.850020). For cross-

polarization conversion, the PCR for normal incidence is over

0.95 from 9.2 to 18.7 GHz, covering 68% of the central frequency.

Guo et al. proposed the multiple linear-crossing dispersion in the

hyperbolic topological transition (doi:10.3389/fmats.2022.

1001233). The unique beam splitting and directional

refraction of multiple linear-crossing dispersion at different

frequencies have been demonstrated. Ran et al. employed a

broadband dual-polarized Huygens’ metasurface by

constructing simultaneous electric and magnetic responses

and realized the efficient anomalous refraction of terahertz

wave (doi:10.3389/fmats.2022.899689). From the experimental

perspective, Xue et al. exploited the configurations of a 1-bit

dualpolar-sized Huygens’ ultrathin lens antenna (doi:10.3389/

fmats.2022.962798). The 1-bit Huygens’ lens antenna achieved

the refraction functions of 0°, 15°, and 30° radiated beams for dual

polarizations. Wang et al. investigated the large-area

subwavelength cavity antenna with artificial permeability-

negative metamaterials (doi:10.3389/fmats.2022.962798).

Compared with the traditional antenna, the cavity thickness of

the antenna is only 1/5 of the resonant wavelength. Moreover, it

has a high gain, large radiation aperture, and good directivity.

This Research Topic provides an exciting overview of the

different anisotropic metamaterials and metasurfaces that

incorporate reconfigurable mechanisms. From this Research

Topic, these new results demonstrate recent progress in

anisotropic metamaterials and their potential applications in

various aspects, both experimentally and theoretically.

Meanwhile, more engineering attempts emerge for

applications, especially in the microwave community. We

expect that more and more anisotropic metamaterials/

metasurfaces will be demonstrated to control the fundamental

light-matter interactions. To conclude this editorial, we sincerely

appreciate all authors’ contributions to this Research Topic and

believe that it provides an overview of recent efforts by leading

scientists in the field of hyperbolic metamaterials.
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