34 research outputs found

    How Exporting Firms Respond to Technical Barriers to Trade?

    Get PDF
    This paper investigates how Technical Barriers to Trade (TBT) affect firm export performance. The implementation of the “Children-Resistance” act (CR act) in the EU offers an ideal quasi-natural experiment to identify the causal effect of TBTs on firm performance. Using data on Chinese firms that export cigarette lighters between 2004 and 2008, empirical results show that firms that export to the EU not only adjust their product quality to meet the requirements in the CR act, but also upgrade their product quality in other dimensions. However, both the export value and export volume to the EU decline. At the same time, less productive exporters are forced to exit from the EU market. In addition, while the effect of the CR act on export quality is significant only in the implementation year, its impact on firm-level export scale last longer even after its implementation, which is referred to as a dynamic impact. Lastly, Heterogeneous effect of TBT is also documented

    Hysteresis of Electronic Transport in Graphene Transistors

    Full text link
    Graphene field effect transistors commonly comprise graphene flakes lying on SiO2 surfaces. The gate-voltage dependent conductance shows hysteresis depending on the gate sweeping rate/range. It is shown here that the transistors exhibit two different kinds of hysteresis in their electrical characteristics. Charge transfer causes a positive shift in the gate voltage of the minimum conductance, while capacitive gating can cause the negative shift of conductance with respect to gate voltage. The positive hysteretic phenomena decay with an increase of the number of layers in graphene flakes. Self-heating in helium atmosphere significantly removes adsorbates and reduces positive hysteresis. We also observed negative hysteresis in graphene devices at low temperature. It is also found that an ice layer on/under graphene has much stronger dipole moment than a water layer does. Mobile ions in the electrolyte gate and a polarity switch in the ferroelectric gate could also cause negative hysteresis in graphene transistors. These findings improved our understanding of the electrical response of graphene to its surroundings. The unique sensitivity to environment and related phenomena in graphene deserve further studies on nonvolatile memory, electrostatic detection and chemically driven applications.Comment: 13 pages, 6 Figure

    Automatic Creation of Web Services from Extraction Ontologies

    No full text
    Abstract. The Semantic Web promises to provide timely, targeted access to user-specified information online. Though standardized services exist for performing this work, specifying these services is too complex for most people. Annotating these services is also problematic. A similar situation exists for traditional information extraction, where ontologies are increasingly used to specify information used by various extraction methods. The approach we introduce in this paper involves converting such ontologies into executable Java code. These APIs act individually or compositionally as services for Semantic Web extraction.

    Reinforcement of Recycled Aggregate by Microbial-Induced Mineralization and Deposition of Calcium Carbonate—Influencing Factors, Mechanism and Effect of Reinforcement

    No full text
    Recycled aggregate is aggregate prepared from construction waste. With the development of a global economy and people’s attention to sustainable development, recycled aggregate has shown advantages in replacing natural aggregate in the production of concrete due to its environmental friendliness, low energy consumption, and low cost. Recycled aggregate exhibits high water absorption and a multi-interface transition zone, which limits its application scope. Researchers have used various methods to improve the properties of recycled aggregate, such as microbially induced calcium carbonate precipitation (MICP) technology. In this paper, the results of recent studies on the reinforcement of recycled aggregate by MICP technology are synthesized, and the factors affecting the strengthening effect of recycled aggregate are reviewed. Moreover, the strengthening mechanism, advantages and disadvantages of MICP technology are summarized. After the modified treatment, the aggregate performance is significantly improved. Regardless of whether the aggregate was used in mortar or concrete, the mechanical properties of the specimens were clearly improved. However, there are some issues regarding the application of MICP technology, such as the use of an expensive culture medium, a long modification cycle, and untargeted mineralization deposition. These difficulties need to be overcome in the future for the industrialization of regenerated aggregate materials via MICP technology

    A preferable approach to clone hLIF cDNA from the genomic DNA

    Get PDF
    Complementary DNA (cDNA) is valuable for investigating protein structure and function in the research of life science, but it is difficult to obtain by traditional reverse transcription. In this study, we employed a novel strategy to clone the human leukemia inhibitory factor (hLIF) gene cDNA from genomic DNA directly isolated from the mucous membrane of mouth. The hLIF sequence can be acquired within a few hours by means of amplification of each exon and splicing using overlap-PCR. Thus, the new approach developed in this study is simple, time- and cost-effective, and it is not limited to particular gene expression levels of each tissue

    Development of Biodegradable Polymeric Stents for the Treatment of Cardiovascular Diseases

    No full text
    Cardiovascular disease has become the leading cause of death. A vascular stent is an effective means for the treatment of cardiovascular diseases. In recent years, biodegradable polymeric vascular stents have been widely investigated by researchers because of its degradability and clinical application potential for cardiovascular disease treatment. Compared to non-biodegradable stents, these stents are designed to degrade after vascular healing, leaving regenerated healthy arteries. This article reviews and summarizes the recent advanced methods for fabricating biodegradable polymeric stents, including injection molding, weaving, 3D printing, and laser cutting. Besides, the functional modification of biodegradable polymeric stents is also introduced, including visualization, anti-thrombus, endothelialization, and anti-inflammation. In the end, the challenges and future perspectives of biodegradable polymeric stents were discussed

    Research Advances of Injectable Functional Hydrogel Materials in the Treatment of Myocardial Infarction

    No full text
    Myocardial infarction (MI) has become one of the serious diseases threatening human life and health. However, traditional treatment methods for MI have some limitations, such as irreversible myocardial necrosis and cardiac dysfunction. Fortunately, recent endeavors have shown that hydrogel materials can effectively prevent negative remodeling of the heart and improve the heart function and long-term prognosis of patients with MI due to their good biocompatibility, mechanical properties, and electrical conductivity. Therefore, this review aims to summarize the research progress of injectable hydrogel in the treatment of MI in recent years and to introduce the rational design of injectable hydrogels in myocardial repair. Finally, the potential challenges and perspectives of injectable hydrogel in this field will be discussed, in order to provide theoretical guidance for the development of new and effective treatment strategies for MI
    corecore