66 research outputs found

    What Could Tourism Do to a Small Fishing Village: A Case Study of the City of Weihai, China

    Get PDF
    Weihai City, located on the east end of Shandong Peninsula in Northeastern China was once a small and remote fishing village. In recent years Weihai City has become one of the most popular tourism destinations in China. The tremendous development of tourism has had a significant impact on Weihai’s economy, physical environment, and culture. Weihai is now famous for the beautiful coastal scenery, high quality leisure living, and a strong Korean and increasingly Russian influence. This study examines the perception of Weihai residents on the position of Weihai as a tourist destination and also their vision of Weihai’s future tourism development. Based on the resident surveys and available secondary data, tourism impacts in Weihai can be said to be largely positive. Place attachment and a sense of pride about belonging to the place are noticeable among the locals. Economic data suggests overall prosperity, too. However, available evidence also highlights some strained relationships among the various stakeholder groups

    Analytical Frequency Nadir Prediction Considering Inverter-Based Fast Frequency Response

    Full text link
    This letter develops an analytical frequency nadir prediction method that allows for the consideration of three potential forms of fast frequency response (FFR) provided by inverter-based resources. The proposed method provides fast and accurate frequency nadir estimation after N-1 generation tripping contingencies. Our method is grounded on the closed-form solution for the frequency nadir, which is solved from the second-order system frequency response model considering the governor dynamics and three types of FFR. The simulation results in the IEEE 39-bus system with different types of FFR demonstrate that the proposed method provides accurate and fast prediction for the frequency nadir under various disturbances

    Large-Signal Stability Criteria in DC Power Grids with Distributed-Controlled Converters and Constant Power Loads

    Full text link
    The increasing adoption of power electronic devices may lead to large disturbance and destabilization of future power systems. However, stability criteria are still an unsolved puzzle, since traditional small-signal stability analysis is not applicable to power electronics-enabled power systems when a large disturbance occurs, such as a fault, a pulse power load, or load switching. To address this issue, this paper presents for the first time the rigorous derivation of the sufficient criteria for large-signal stability in DC microgrids with distributed-controlled DC-DC power converters. A novel type of closed-loop converter controllers is designed and considered. Moreover, this paper is the first to prove that the well-known and frequently cited Brayton-Moser mixed potential theory (published in 1964) is incomplete. Case studies are carried out to illustrate the defects of Brayton-Moser mixed potential theory and verify the effectiveness of the proposed novel stability criteria

    Optimizing Partial Power Processing for Second-Use Battery Energy Storage Systems

    Full text link
    Repurposing automotive batteries to second-use battery energy storage systems (2-BESS) may have environmental and economic benefits. The challenge with second-use batteries is the uncertainty and diversity of the expected packs in terms of their chemistry, capacity and remaining useful life. This paper introduces a new strategy to optimize 2-BESS performance despite the diversity or heterogeneity of individual batteries while reducing the cost of power conversion. In this paper, the statistical distribution of the power heterogeneity in the supply of batteries is considered when optimizing the choice of power converters and designing the power flow within the battery energy storage system (BESS) to maximize battery utilization. By leveraging a new lite-sparse hierarchical partial power processing (LS-HiPPP) approach, we show a hierarchy in partial power processing (PPP) partitions power converters to a) significantly reduce converter ratings, b) process less power to achieve high system efficiency with lower cost (lower efficiency) converters, and c) take advantage of economies of scale by requiring only a minimal number of sets of identical converters. The results demonstrate that LS-HiPPP architectures offer the best tradeoff between battery utilization and converter cost and had higher system efficiency than conventional partial power processing (C-PPP) in all cases

    Challenges and Opportunities for Second-life Batteries: A Review of Key Technologies and Economy

    Full text link
    Due to the increasing volume of Electric Vehicles in automotive markets and the limited lifetime of onboard lithium-ion batteries (LIBs), the large-scale retirement of LIBs is imminent. The battery packs retired from Electric Vehicles still own 70%-80% of the initial capacity, thus having the potential to be utilized in scenarios with lower energy and power requirements to maximize the value of LIBs. However, spent batteries are commonly less reliable than fresh batteries due to their degraded performance, thereby necessitating a comprehensive assessment from safety and economic perspectives before further utilization. To this end, this paper reviews the key technological and economic aspects of second-life batteries (SLBs). Firstly, we introduce various degradation models for first-life batteries and identify an opportunity to combine physics-based theories with data-driven methods to establish explainable models with physical laws that can be generalized. However, degradation models specifically tailored to SLBs are currently absent. Therefore, we analyze the applicability of existing battery degradation models developed for first-life batteries in SLB applications. Secondly, we investigate fast screening and regrouping techniques and discuss the regrouping standards for the first time to guide the classification procedure and enhance the performance and safety of SLBs. Thirdly, we scrutinize the economic analysis of SLBs and summarize the potentially profitable applications. Finally, we comprehensively examine and compare power electronics technologies that can substantially improve the performance of SLBs, including high-efficiency energy transformation technologies, active equalization technologies, and technologies to improve reliability and safety

    The genetic architecture of membranous nephropathy and its potential to improve non-invasive diagnosis

    Get PDF
    Membranous Nephropathy (MN) is a rare autoimmune cause of kidney failure. Here we report a genome-wide association study (GWAS) for primary MN in 3,782 cases and 9,038 controls of East Asian and European ancestries. We discover two previously unreported loci, NFKB1 (rs230540, OR = 1.25, P = 3.4 × 10−12) and IRF4 (rs9405192, OR = 1.29, P = 1.4 × 10−14), fine-map the PLA2R1 locus (rs17831251, OR = 2.25, P = 4.7 × 10−103) and report ancestry-specific effects of three classical HLA alleles: DRB1*1501 in East Asians (OR = 3.81, P = 2.0 × 10−49), DQA1*0501 in Europeans (OR = 2.88, P = 5.7 × 10−93), and DRB1*0301 in both ethnicities (OR = 3.50, P = 9.2 × 10−23 and OR = 3.39, P = 5.2 × 10−82, respectively). GWAS loci explain 32% of disease risk in East Asians and 25% in Europeans, and correctly re-classify 20–37% of the cases in validation cohorts that are antibody-negative by the serum anti-PLA2R ELISA diagnostic test. Our findings highlight an unusual genetic architecture of MN, with four loci and their interactions accounting for nearly one-third of the disease risk
    • …
    corecore