25 research outputs found

    Genetic Ablation of Solute Carrier Family 7a3a Leads to Hepatic Steatosis in Zebrafish During Fasting

    No full text
    Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disorder caused by abnormal lipid metabolisms, such as reduced hepatic fatty acid oxidation (FAO), but intracellular control of FAO under physio-and pathological conditions remains largely undefined. Here, we demonstrate that deprivation of Slc7a3a leads to hepatic steatosis in fasted zebrafish as a result of defects in arginine-dependent nitric oxide (NO) synthesis. Fast-induced hepatic steatosis in slc7a3a-null mutants can be rescued by treatments with NO donor, cyclic guanosine monophosphate analog, adenosinemonophosphate- activated protein kinase (AMPK) activator, or peroxisome proliferatoractivated receptor alpha (PPAR-alpha) agonist. In contrast, inhibitors of NO synthases, AMPK, or soluble guanylate cyclase and liver-specifically expressed dominant negatives of peroxisome proliferator-activated receptor-gamma coactivator 1 alpha and PPAR-alpha are sufficient to induce hepatic steatosis in fasted wild-type larvae. Moreover, knockdown of Slc7a3 in mice or SLC7A3 in human liver cells impaired AMPK-PPAR-alpha signaling and resulted in lipid accumulation under fasting or glucose starvation, respectively. Conclusion: These findings have revealed a NO-AMPK-PPAR-alpha-signaling pathway that is crucial for the control of hepatic FAO in vertebrates

    A Multichannel fNIRS System for Prefrontal Mental Task Classification with Dual-level Excitation and Deep Forest Algorithm

    No full text
    This paper presents a multichannel functional continuous-wave near-infrared spectroscopy (fNIRS) system, which collects data under a dual-level light intensity mode to optimize SNR for channels with multiple source-detector separations. This system is applied to classify different cortical activation states of the prefrontal cortex (PFC). Mental arithmetic, digit span, semantic task, and rest state were selected as four mental tasks. A deep forest algorithm is employed to achieve high classification accuracy. By employing multigrained scanning to fNIRS data, this system can extract the structural features and result in higher performance. The proposed system with proper optimization can achieve 86.9% accuracy on the self-built dataset, which is the highest result compared to the existing systems

    Effect of Pre-Stressing on the Acid-Stress Response in Bifidobacterium Revealed Using Proteomic and Physiological Approaches.

    No full text
    Weak acid resistance limits the application of Bifidobacteria as a probiotic in food. The acid tolerance response (ATR), caused by pre-stressing cells at a sublethal pH, could improve the acid resistance of Bifidobacteria to subsequent acid stress. In this study, we used Bifidobacterium longum sub. longum BBMN68 to investigate the effect of the ATR on the acid stress response (ASR), and compared the difference between the ATR and the ASR by analyzing the two-dimensional-PAGE protein profiles and performing physiological tests. The results revealed that a greater abundance of proteins involved in carbohydrate metabolism and protein protection was present after the ASR than after the ATR in Bifidobacterium. Pre-stressing cells increased the abundance of proteins involved in energy production, amino acid metabolism, and peptidoglycan synthesis during the ASR of Bifidobacterium. Moreover, after the ASR, the content of ATP, NH3, thiols, and peptidoglycan, the activity of H+-ATPase, and the maintenance of the intracellular pH in the pre-stressed Bifidobacterium cells was significantly higher than in the uninduced cells. These results provide the first explanation as to why the resistance of Bifidobacterium to acid stress improved after pre-stressing

    Diversity Temporal–Spatial Dynamics of Potato Rhizosphere Ciliates and Contribution to Nitrogen- and Carbon-Derived Nutrition in North-East China

    No full text
    Ciliates are an important component of the rhizosphere microorganism community, but their nutritional contribution to plants has not been fully revealed. In this paper, we investigated the rhizosphere ciliate community of potatoes during six growth stages, illustrated the spatial–temporal dynamics of composition and diversity, and analyzed the correlation between soil physicochemical properties. The contributions of ciliates to the carbon- and nitrogen-derived nutrition of potatoes were calculated. Fifteen species of ciliates were identified, with higher diversity in the top soil, which increased as the potatoes grew, while they were more abundant in the deep soil, and the number decreased as the potatoes grew. The highest number of species of ciliates appeared in July (seedling stage). Among the five core species of ciliates, Colpoda sp. was the dominant species in all six growth stages. Multiple physicochemical properties affected the rhizosphere ciliate community, with ammonium nitrogen (NH4+-N) and the soil water content (SWC) greatly influencing ciliate abundance. The key correlation factors of ciliates diversity were NH4+-N, available phosphorus (AP), and soil organic matter (SOM). The annual average contribution rates of carbon and nitrogen by rhizosphere ciliates to potatoes were 30.57% and 23.31%, respectively, with the highest C/N contribution rates reaching 94.36% and 72.29% in the seedling stage. This study established a method for estimating the contributions of carbon and nitrogen by ciliates to crops and found that ciliates could be potential organic fertilizer organisms. These results might be used to improve water and nitrogen management in potato cultivation and promote ecological agriculture

    Long-term acupuncture treatment has a multi-targeting regulation on multiple brain regions in rats with Alzheimer’s disease : a positron emission tomography study

    No full text
    The acute effect of acupuncture on Alzheimer’s disease, i.e., on brain activation during treatment, has been reported. However, the effect of long-term acupuncture on brain activation in Alzheimer’s disease is unclear. Therefore, in this study, we performed long-term needling at Zusanli (ST36) or a sham point (1.5 mm lateral to ST36) in a rat Alzheimer’s disease model, for 30 minutes, once per day, for 30 days. The rats underwent 18F-fluorodeoxyglucose positron emission tomography scanning. Positron emission tomography images were processed with SPM2. The brain areas activated after needling at ST36 included the left hippocampus, the left orbital cortex, the left infralimbic cortex, the left olfactory cortex, the left cerebellum and the left pons. In the sham-point group, the activated regions were similar to those in the ST36 group. However, the ST36 group showed greater activation in the cerebellum and pons than the sham-point group. These findings suggest that long-term acupuncture treatment has targeted regulatory effects on multiple brain regions in rats with Alzheimer’s disease

    Acupuncture regulates the glucose metabolism in cerebral functional regions in chronic stage ischemic stroke patients---a PET-CT cerebral functional imaging study

    No full text
    Abstract Background Acupuncture has been applied to aid in the recovery of post-stroke patients, but its mechanism is unclear. This study aims to analyze the relationship between acupuncture and glucose metabolism in cerebral functional regions in post-stroke patients using 18 FDG PET-CT techniques. Forty-three ischemic stroke patients were randomly divided into 5 groups: the Waiguan (TE5) needling group, the TE5 sham needling group, the sham point needling group, the sham point sham needling group and the non-needling group. Cerebral functional images of all patients were then acquired using PET-CT scans and processed by SPM2 software. Results Compared with the non-needling group, sham needling at TE5 and needling/sham needling at the sham point did not activate cerebral areas. However, needling at TE5 resulted in the activation of Brodmann Area (BA) 30. Needling/sham needling at TE5 and needling at the sham point did not deactivate any cerebral areas, whereas sham needling at the sham point led to deactivation in BA6. Compared with sham needling at TE5, needling at TE5 activated BA13, 19 and 47 and did not deactivate any areas. Compared with needling at the sham point, needling at TE5 had no associated activation but a deactivating effect on BA9. Conclusion Needling at TE5 had a regulating effect on cerebral functional areas shown by PET-CT, and this may relate to its impact on the recovery of post-stroke patients.</p

    Schematic of the experimental design.

    No full text
    <p>Cultures in the mid-exponential phase (OD<sub>600</sub> = 0.6) were harvested and divided into two. Half of the cells were cultured for 2 h in the original medium, serving as the control group, and the other half of the cells wereculturedat pH 4.5 for 2 h, serving as the pre-stressed group. Then, the cells from both groups were harvested and challengedat a lethal pH 3.5 for 2 h. The resulting cells served as the control-pH 3.5 group and the pre-stressed-pH 3.5 group. ATR, response to pH 4.5; ASR, response to pH 3.5 of the cells in the control group; ASR, response to pH 3.5 of the cells in the pre-stressed group.</p
    corecore