646 research outputs found

    Many Worlds, the Cluster-state Quantum Computer, and the Problem of the Preferred Basis

    Get PDF
    I argue that the many worlds explanation of quantum computation is not licensed by, and in fact is conceptually inferior to, the many worlds interpretation of quantum mechanics from which it is derived. I argue that the many worlds explanation of quantum computation is incompatible with the recently developed cluster state model of quantum computation. Based on these considerations I conclude that we should reject the many worlds explanation of quantum computation.Comment: Added doi, acknowledgements, miscellaneous typo correction

    Reflections on the Role of Entanglement in the Explanation of Quantum Computational Speedup

    Get PDF
    Of the many and varied applications of quantum information theory, perhaps the most fascinating is the sub-field of quantum computation. In this sub-field, computational algorithms are designed which utilise the resources available in quantum systems in order to compute solutions to computational problems with, in some cases, exponentially fewer resources than any known classical algorithm. While the fact of quantum computational speedup is almost beyond doubt, the source of quantum speedup is still a matter of debate. In this paper I argue that entanglement is a necessary component for any explanation of quantum speedup and I address some purported counter-examples that some claim show that the contrary is true. In particular, I address Biham et al.'s mixed-state version of the Deutsch-Jozsa algorithm, and Knill \& Laflamme's deterministic quantum computation with one qubit (DQC1) model of quantum computation. I argue that these examples do not demonstrate that entanglement is unnecessary for the explanation of quantum speedup, but that they rather illuminate and clarify the role that entanglement does play

    Information Causality, the Tsirelson Bound, and the 'Being-Thus' of Things

    Get PDF
    The principle of `information causality' can be used to derive an upper bound---known as the `Tsirelson bound'---on the strength of quantum mechanical correlations, and has been conjectured to be a foundational principle of nature. To date, however, it has not been sufficiently motivated to play such a foundational role. The motivations that have so far been given are, as I argue, either unsatisfactorily vague or appeal to little if anything more than intuition. Thus in this paper I consider whether some way might be found to successfully motivate the principle. And I propose that a compelling way of so doing is to understand it as a generalisation of Einstein's principle of the mutually independent existence---the `being-thus'---of spatially distant things. In particular I first describe an argument, due to Demopoulos, to the effect that the so-called `no-signalling' condition can be viewed as a generalisation of Einstein's principle that is appropriate for an irreducibly statistical theory such as quantum mechanics. I then argue that a compelling way to motivate information causality is to in turn consider it as a further generalisation of the Einsteinian principle that is appropriate for a theory of communication. I describe, however, some important conceptual obstacles that must yet be overcome if the project of establishing information causality as a foundational principle of nature is to succeed.Comment: '*' footnote added to page 1; 24 pages, 1 figure; Forthcoming in Studies in History and Philosophy of Modern Physic

    On the Necessity of Entanglement for the Explanation of Quantum Speedup

    Get PDF
    In this paper I argue that entanglement is a necessary component for any explanation of quantum speedup and I address some purported counter-examples that some claim show that the contrary is true. In particular, I address Biham et al.'s mixed-state version of the Deutsch-Jozsa algorithm, and Knill & Laflamme's deterministic quantum computation with one qubit (DQC1) model of quantum computation. I argue that these examples do not demonstrate that entanglement is unnecessary for the explanation of quantum speedup, but that they rather illuminate and clarify the role that entanglement does play.Comment: Many clarificatory changes, and improved argumentation. Comments and criticisms are still welcom

    Is Entanglement Sufficient to Enable Quantum Speedup?

    Get PDF
    According to the Gottesman-Knill theorem, any quantum algorithm utilising operations chosen exclusively from a particular restricted set are efficiently simulable by a classical computer. Since some of these algorithms involve entangled states, it is commonly concluded that entanglement is insufficient to enable quantum speedup. As I explain, however, the operations belonging to this set are precisely those which will never yield a violation of the Bell inequalities. Thus it should be no surprise that entangled quantum states which only undergo operations in this set are efficiently simulable classically. What the Gottesman-Knill theorem shows us is that it is possible to use an entangled state to less than its full potential. Nevertheless, there is a meaningful sense in which entanglement is sufficient for quantum speedup: an entangled quantum state provides sufficient physical resources to enable quantum speedup, whether or not one elects to use these resources fully.Comment: Only minor changes from last version. Comments and criticisms are welcome. This article has been superseded by arXiv:1310.093

    On the Debate Concerning the Proper Characterisation of Quantum Dynamical Evolution

    Get PDF
    There has been a long-standing and sometimes passionate debate between physicists over whether a dynamical framework for quantum systems should incorporate not completely positive (NCP) maps in addition to completely positive (CP) maps. Despite the reasonableness of the arguments for complete positivity, we argue that NCP maps should be allowed, with a qualification: these should be understood, not as reflecting 'not completely positive' evolution, but as linear extensions, to a system's entire state space, of CP maps that are only partially defined. Beyond the domain of definition of a partial-CP map, we argue, much may be permitted.Comment: To be presented at the 2012 biennial meeting of the Philosophy of Science Association (PSA), San Diego, Californi

    High quality exports and consumers’ trust: a development perspective

    Get PDF
    We analyze the impact of the effectiveness of internal regulation for the development of internal and export markets for credence goods, particularly for a developing country which is an exporter (or a potential exporter). In the model, since goods of actual different quality can be sold as high quality goods, expected quality is a function of consumers’ beliefs about the effectiveness of regulation. Foreign consumers, who cannot observe foreign regulation as closely as domestic ones, may partly base their expectations on the level of development of the exporting country. Low effectiveness, negative stereotype and low consumers’ trust may cause a failure in the market for high quality, and there may be a trap of underdevelopment and no high quality exports. The main policy implications are that increasing the effectiveness of regulation improves export prospects; standard setting and enforcement by external actors, such as supermarkets, or NGOs in the case of certain niche markets, is likely to be beneficial

    On the Physical Explanation for Quantum Computational Speedup

    Get PDF
    The aim of this dissertation is to clarify the debate over the explanation of quantum speedup and to submit, for the reader’s consideration, a tentative resolution to it. In particular, I argue that the physical explanation for quantum speedup is precisely the fact that the phenomenon of quantum entanglement enables a quantum computer to fully exploit the representational capacity of Hilbert space. This is impossible for classical systems, joint states of which must always be representable as product states. I begin the dissertation by considering, in Chapter 2, the most popular of the candidate physical explanations for quantum speedup: the many worlds explanation of quantum computation. I argue that, although it is inspired by the neo-Everettian interpretation of quantum mechanics, unlike the latter it does not have the conceptual resources required to overcome objections such as the so-called ‘preferred basis objection’. I further argue that the many worlds explanation, at best, can serve as a good description of the physical process which takes place in so-called network-based computation, but that it is incompatible with other models of computation such as cluster state quantum computing. I next consider, in Chapter 3, a common component of most other candidate explanations of quantum speedup: quantum entanglement. I investigate whether entanglement can be said to be a necessary component of any explanation for quantum speedup, and I consider two major purported counter-examples to this claim. I argue that both of these do not, in fact, show that entanglement is unnecessary for speedup, and that, on the contrary, we should conclude that it is. In Chapters 4 and 5 I then ask whether entanglement can be said to be sufficient as well. In Chapter 4 I argue that despite a result that seems to indicate the contrary, entanglement, considered as a resource, can be seen as sufficient to enable quantum speedup. Finally, in Chapter 5 I argue that entanglement is sufficient to explain quantum speedup as well
    • 

    corecore