10 research outputs found
La huella metabólica del cáncer
La huella metabólica del cáncer
The ATPase inhibitory factor 1 is a tissue-specific physiological regulator of the structure and function of mitochondrial ATP synthase: A closer look into neuronal function
The ATP synthase is an essential multifunctional enzyme complex of mitochondria that produces most of cellular ATP, shapes the structure of the inner membrane into cristae and regulates the signals that control cell fate or demise. The ATPase Inhibitory Factor 1 (IF1) functions in vivo as a physiological regulator of the ATP synthase and thereby controls mitochondrial structure and function, and the retrograde signaling pathways that reprogram nuclear gene expression. However, IF1 is not ubiquitously expressed in mammals, showing tissue-restricted expression in humans and mice and large expression differences between the two species in some tissues. Herein, we summarized key regulatory functions of IF1 for tissue homeostasis, with special emphasis on the deleterious effects that its genetic ablation in neurons has in learning. The development and characterization of tissue-specific mouse models with regulated expression of IF1 will be crucial to disentangle the contribution of the ATP synthase/IF1 axis in pathophysiologySD-Z, and IR-C were supported by predoctoral fellowships from FPI-MINECO and FPU-MINECO, Fondo Social Europeo, respectively. PE-M was supported by a predoctoral fellowship from La Caixa. The work was supported by grants from MINECO (PID2019-108674RB100), CIBERER-ISCIII (CB06/07/0017) and Fundación Ramón Areces, Spai
IF1 promotes oligomeric assemblies of sluggish ATP synthase and outlines the heterogeneity of the mitochondrial membrane potential
The coexistence of two pools of ATP synthase in mitochondria has been largely neglected despite in vitro indications for the existence of reversible active/inactive state transitions in the F1-domain of the enzyme. Herein, using cells and mitochondria from mouse tissues, we demonstrate the existence in vivo of two pools of ATP synthase: one active, the other IF1-bound inactive. IF1 is required for oligomerization and inactivation of ATP synthase and for proper cristae formation. Immunoelectron microscopy shows the co-distribution of IF1 and ATP synthase, placing the inactive “sluggish” ATP synthase preferentially at cristae tips. The intramitochondrial distribution of IF1 correlates with cristae microdomains of high membrane potential, partially explaining its heterogeneous distribution. These findings support that IF1 is the in vivo regulator of the active/inactive state transitions of the ATP synthase and suggest that local regulation of IF1-ATP synthase interactions is essential to activate the sluggish ATP synthaseThe work was supported by grants from MINECO (PID2019-108674RB-100), CIBERER-ISCIII (CB06/07/0017) and Fundación Ramón Areces, Spain. IRC and PBEM were supported by predoctoral fellowships from FPU-MINECO and La Caixa, respectively. SDZ and CNT were supported by predoctoral fellowships from FPI-MINECO, Fondo Social Europe
Metformin overcomes metabolic reprogramming-induced resistance of skin squamous cell carcinoma to photodynamic therapy
Cancer metabolic reprogramming promotes resistance to therapies. In this study, we addressed the role of the Warburg effect in the resistance to photodynamic therapy (PDT) in skin squamous cell carcinoma (sSCC). Furthermore, we assessed the effect of metformin treatment, an antidiabetic type II drug that modulates metabolism, as adjuvant to PDT. Methods: For that, we have used two human SCC cell lines: SCC13 and A431, called parental (P) and from these cell lines we have generated the corresponding PDT resistant cells (10GT). Results: Here, we show that 10GT cells induced metabolic reprogramming to an enhanced aerobic glycolysis and reduced activity of oxidative phosphorylation, which could influence the response to PDT. This result was also confirmed in P and 10GT SCC13 tumors developed in mice. The treatment with metformin caused a reduction in aerobic glycolysis and an increase in oxidative phosphorylation in 10GT sSCC cells. Finally, the combination of metformin with PDT improved the cytotoxic effects on P and 10GT cells. The combined treatment induced an increase in the protoporphyrin IX production, in the reactive oxygen species generation and in the AMPK expression and produced the inhibition of AKT/mTOR pathway. The greater efficacy of combined treatments was also seen in vivo, in xenografts of P and 10GT SCC13 cells. Conclusions: Altogether, our results reveal that PDT resistance implies, at least partially, a metabolic reprogramming towards aerobic glycolysis that is prevented by metformin treatment. Therefore, metformin may constitute an excellent adjuvant for PDT in sSCCThis research was supported by Spanish grants from Instituto de Salud Carlos III MINECO and Feder Funds (FIS PI15/00974; PI18/00858 and PI18/00708) and Ministerio de Ciencia, Innovación y Universidades (PID2019-108674RB-100
Exploiting the passenger ACO1-deficiency arising from 9p21 deletions to kill T-cell lymphoblastic neoplasia cells
Precursor T-cell lymphoblastic neoplasms are aggressive malignancies in need for more effective and specific therapeutic treatments. A significant fraction of these neoplasms harbor deletions on the locus 9p21, targeting the tumor suppressor CDKN2A but also deleting the aconitase 1 (ACO1) gene, a neighboring housekeeping gene involved in cytoplasm and mitochondrial metabolism. Here we show that reducing the aconitase activity with fluorocitrate decreases the viability of T-cell lymphoblastic neoplasia cells in correlation to the differential aconitase expression. The consequences of the treatment were evidenced in vitro using T-cell lymphoblastic neoplasia cell lines exhibiting 9p21 deletions and variable levels of ACO1 expression or activity. Similar results were observed in melanoma cell lines, suggesting a true potential for fluorocitrate in different cancer types. Notably, ectopic expression of ACO1 alleviated the susceptibility of cell lines to fluorocitrate and, conversely, knockdown experiments increased susceptibility of resistant cell lines. These findings were confirmed in vivo on athymic nude mice by using tumor xenografts derived from two T-cell lines with different levels of ACO1. Taken together, our results indicate that the non-targeted ACO1 deficiency induced by common deletions exerts a collateral cellular lethality that can be used as a novel therapeutic strategy in the treatment of several types of cancerInstituto de Salud Carlos III (ACCI-CIBERER-17); Spanish Ministerio de Economía y Competitividad (SAF2015-70561 R;MINECO/FEDER, EU); Spanish Ministerio de Ciencia, Innovación y Universidades (RTI2018-093330-B-I00; MCIU/FEDER, EU); Universidad Autónoma de Madrid, Spain (B2017/BMD-3778; LINFOMAS-CM); Spanish Association Against Cancer (AECC,
2018; PROYE18054PIRI); Fundación Ramón Areces (CIVP19S7917); Institutional grants from Fundación Ramón Areces and Banco de Santander to Centro de Biología Molecular Severo Ochoa are also acknowledge
The NADPH oxidase NOX4 regulates redox and metabolic homeostasis preventing HCC progression
Background and Aims: The NADPH oxidase NOX4 plays a tumor-suppressor function in HCC. Silencing NOX4 confers higher proliferative and migratory capacity to HCC cells and increases their in vivo tumorigenic potential in xenografts in mice. NOX4 gene deletions are frequent in HCC, correlating with higher tumor grade and worse recurrence-free and overall survival rates. However, despite the accumulating evidence of a protective regulatory role in HCC, the cellular processes governed by NOX4 are not yet understood. Accordingly, the aim of this work was to better understand the molecular mechanisms regulated by NOX4 in HCC in order to explain its tumor-suppressor action. Approach and Results: Experimental models: cell-based loss or gain of NOX4 function experiments, in vivo hepatocarcinogenesis induced by diethylnitrosamine in Nox4-deficient mice, and analyses in human HCC samples. Methods include cellular and molecular biology analyses, proteomics, transcriptomics, and metabolomics, as well as histological and immunohistochemical analyses in tissues. Results identified MYC as being negatively regulated by NOX4. MYC mediated mitochondrial dynamics and a transcriptional program leading to increased oxidative metabolism, enhanced use of both glucose and fatty acids, and an overall higher energetic capacity and ATP level. NOX4 deletion induced a redox imbalance that augmented nuclear factor erythroid 2-related factor 2 (Nrf2) activity and was responsible for MYC up-regulation. Conclusions: Loss of NOX4 in HCC tumor cells induces metabolic reprogramming in a Nrf2/MYC-dependent manner to promote HCC progressionAgència de Gestió d’Ajuts Universitaris i de Recerca, Grant/Award Number: 2017SGR1015; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Grant/Award Number: CB17/04/00017 and CB06/04/0017; Centro de Investigación Biomédica en Red de Enfermedades Raras, Grant/Award Number: CB06/07/0017; Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas, Grant/Award Number: CB07/08/0017; Ministerio de Ciencia e Innovación, Spain: FPI fellowships: BES-2016-077564, PRE2019-089144, Grant/Award Number: PID2019-106209RB-I00, PID2019-108674RB-100, SAF2015-64149-R, RTI2018-094079-B-100, PID2021-122551OB-I00 and RED2018-102576-T; Science Foundation Ireland, Grant/Award Number: 16/IA/450
Critical requirement of SOS1 RAS-GEF function for mitochondrial dynamics, metabolism, and redox homeostasis
SOS1 ablation causes specific defective phenotypes in MEFs including increased levels of intracellular ROS. We showed that the mitochondria-targeted antioxidant MitoTEMPO restores normal endogenous ROS levels, suggesting predominant involvement of mitochondria in generation of this defective SOS1-dependent phenotype. The absence of SOS1 caused specific alterations of mitochondrial shape, mass, and dynamics accompanied by higher percentage of dysfunctional mitochondria and lower rates of electron transport in comparison to WT or SOS2-KO counterparts. SOS1-deficient MEFs also exhibited specific alterations of respiratory complexes and their assembly into mitochondrial supercomplexes and consistently reduced rates of respiration, glycolysis, and ATP production, together with distinctive patterns of substrate preference for oxidative energy metabolism and dependence on glucose for survival. RASless cells showed defective respiratory/metabolic phenotypes reminiscent of those of SOS1-deficient MEFs, suggesting that the mitochondrial defects of these cells are mechanistically linked to the absence of SOS1-GEF activity on cellular RAS targets. Our observations provide a direct mechanistic link between SOS1 and control of cellular oxidative stress and suggest that SOS1-mediated RAS activation is required for correct mitochondrial dynamics and function
Coordinate β-adrenergic inhibition of mitochondrial activity and angiogenesis arrest tumor growth
Mitochondrial metabolism has emerged as a promising target against the mechanisms of tumor growth. Herein, we have screened an FDA-approved library to identify drugs that inhibit mitochondrial respiration. The β1-blocker nebivolol specifically hinders oxidative phosphorylation in cancer cells by concertedly inhibiting Complex I and ATP synthase activities. Complex I inhibition is mediated by interfering the phosphorylation of NDUFS7. Inhibition of the ATP synthase is exerted by the overexpression and binding of the ATPase Inhibitory Factor 1 (IF1) to the enzyme. Remarkably, nebivolol also arrests tumor angiogenesis by arresting endothelial cell proliferation. Altogether, targeting mitochondria and angiogenesis triggers a metabolic and oxidative stress crisis that restricts the growth of colon and breast carcinomas. Nebivolol holds great promise to be repurposed for the treatment of cancer patients.FPI-MINECO and Fondo Social Europeo. L.F. received support from the Ramón y Cajal Program (RyC-2013-13693). The work was supported by grants from MINECO (SAF2016-75916-R and PID2019-108674RB-100), CIBERER-ISCIII (CB06/07/0017) and Fundación Ramón Arece
Chronic inhibition of the mitochondrial ATP synthase in skeletal muscle triggers sarcoplasmic reticulum distress and tubular aggregates
Tubular aggregates (TA) are honeycomb-like arrays of sarcoplasmic-reticulum (SR) tubules affecting aged glycolytic fibers of male individuals and inducing severe sarcomere disorganization and muscular pain. TA develop in skeletal muscle from Tubular Aggregate Myopathy (TAM) patients as well as in other disorders including endocrine syndromes, diabetes, and ageing, being their primary cause unknown. Nowadays, there is no cure for TA. Intriguingly, both hypoxia and calcium dyshomeostasis prompt TA formation, pointing to a possible role for mitochondria in their setting. However, a functional link between mitochondrial dysfunctions and TA remains unknown. Herein, we investigate the alteration in muscle-proteome of TAM patients, the molecular mechanism of TA onset and a potential therapy in a preclinical mouse model of the disease. We show that in vivo chronic inhibition of the mitochondrial ATP synthase in muscle causes TA. Upon long-term restrained oxidative phosphorylation (OXPHOS), oxidative soleus experiments a metabolic and structural switch towards glycolytic fibers, increases mitochondrial fission, and activates mitophagy to recycle damaged mitochondria. TA result from the overresponse of the fission controller DRP1, that upregulates the Store-Operate-Calcium-Entry and increases the mitochondria-SR interaction in a futile attempt to buffer calcium overloads upon prolonged OXPHOS inhibition. Accordingly, hypoxic muscles cultured ex vivo show an increase in mitochondria/SR contact sites and autophagic/mitophagic zones, where TA clusters grow around defective mitochondria. Moreover, hypoxia triggered a stronger TA formation upon ATP synthase inhibition, and this effect was reduced by the DRP1 inhibitor mDIVI. Remarkably, the muscle proteome of TAM patients displays similar alterations in mitochondrial dynamics and in ATP synthase contents. In vivo edaravone treatment in mice with restrained OXPHOS restored a healthy phenotype by prompting mitogenesis and mitochondrial fusion. Altogether, our data provide a functional link between the ATP synthase/DRP1 axis and the setting of TA, and repurpose edaravone as a possible treatment for TA-associated disorder