10 research outputs found
Fabrication and characterization at high temperature of AlGaN/GaN enhancement HEMTs
Enhancement-mode (E-mode) high electron mobility transistors (HEMTs) based on a standard AlGaN/GaN heterostructure have been fabricated using two different methods: 19F implantation and fluorine-based plasma treatment. The need of a thermal annealing after both treatments has been proven in order to restore the ID and gm levels. DC characterization at high temperature has demonstrated that ID and gm decrease reversibly due to the reduction of the electron mobility and the drift velocity. Pulsed measurements (state period and variable pulse width) have been performed to study the self-heating effects
DC and RF Performance of AlGaN/GaN HEMTs on SiC at High Temperatures
GaN-based transistors have demonstrated to be the most promising candidates for applications with high power and high frequency requirements, and working in harsh environments. They take advantage of some interesting properties of nitrides such as their thermal stability or high electron velocity, together with a high sheet carrier density (~1013 cm-2) provided by AlGaN/GaN heterostructures thanks to the favorable band offsets and internal piezoelectric fields. In above applications, transistors may work in small signal amplifiers under high ambient temperatures, or in power amplifiers where channel temperatures may increase significantly. Thus, high temperature (HT) operation and related reliability issues have become important research topics in GaN electronics. Although some works have been recently published about DC characterization of HEMTs at HT [1-5], there are few papers studying their behaviour at RF [4,5]. This work aims to understand the small signal performance of AlGaN/GaN HEMTs on SiC at HT, using DC and RF measurements combined with proper modeling and small signal parameters extraction
Temperature-dependent High-Frequency Performance of Deep Submicron Ion-Implanted AlGaN/GaN HEMTs
A study of the low temperature DC and RF performance of deep submicron AlGaN/GaN high electron mobility transistors (HEMTs) is reported. From 300 K to 100 K both extrinsic transconductance and drain current increase by 30%, mainly due to the lowering of the optical phonon scattering that allows higher electron mobility. Source and drain resistances improve too, which contributes to the 15-20% increase of ft and fmax. The low temperature small signal model has also been extracted accurately at every 50 K. Inductances and capacitances remain constant in the range of temperatures measured. The intrinsic transconductance can be also considered temperature independent, but the output conductance decreases from 300 K to 100 K indicating a better confinement of the 2DEG. The HEMT performance obtained at 100 K can be reached at room temperature by reducing the parasitic resistances and improving the GaN buffer isolation
High temperature behavior of GaN HEMT devices on Si(111) and sapphire substrates.
A study of the high temperature DC performance of nitride high electron mobility transistors (HEMTs) on Si(111) and sapphire substrates with different gate lengths is reported. All single gate transistors decrease their drain current (ID) and transconductance (gm) from room temperature (RT) up to 350 ºC, mainly due to the electron mobility reduction by optical phonon scattering. At RT, HEMTs on Si(111) present higher ID and gm than transistors on sapphire, probably related to their lower self-heating. As devices are heated, these differences tend to disappear, indicating that the substrate thermal conductivity becomes less important. Compact devices have low relative reduction in ID and gm values with temperature, since shorter gate lengths lead to higher fields under the gate and lower temperature dependence of the drift velocit
Evaluation of APD and SiPM Matrices as Sensors for Monolithic PET Detector Block
Gamma detectors based on monolithic scintillator blocks coupled to APDs matrices have proved to be a good alternative to pixelated ones for PET scanners. They provide comparable spatial resolution, improve the sensitivity and make easier the mechanical design of the system. In this study we evaluate by means of Geant4-based simulations the possibility of replacing the APDs by SiPMs. Several commercial matrices of light sensors coupled to LYSO:Ce monolithic blocks have been simulated and compared. Regarding the spatial resolution and linearity of the detector, SiPMs with high photo detection efficiency could become an advantageous replacement for the APD
Thermal effects in Ni/Au and Mo/Au gate metallization AlGaN/GaN HEMT's reliability
AlGaN/GaN high electron mobility transistors (HEMT) are key devices for the next generation of high-power, high-frequency and high-temperature electronics applications. Although significant progress has been recently achieved [1], stability and reliability are still some of the main issues under investigation, particularly at high temperatures [2-3]. Taking into account that the gate contact metallization is one of the weakest points in AlGaN/GaN HEMTs, the reliability of Ni, Mo, Pt and refractory metal gates is crucial [4-6]. This work has been focused on the thermal stress and reliability assessment of AlGaN/GaN HEMTs. After an unbiased storage at 350 o C for 2000 hours, devices with Ni/Au gates exhibited detrimental IDS-VDS degradation in pulsed mode. In contrast, devices with Mo/Au gates showed no degradation after similar storage conditions. Further capacitance-voltage characterization as a function of temperature and frequency revealed two distinct trap-related effects in both kinds of devices. At low frequency (< 1MHz), increased capacitance near the threshold voltage was present at high temperatures and more pronounced for the Ni/Au gate HEMT and as the frequency is lower. Such an anomalous “bump” has been previously related to H-related surface polar charges [7]. This anomalous behavior in the C-V characteristics was also observed in Mo/Au gate HEMTs after 1000 h at a calculated channel temperatures of around from 250 o C (T2) up to 320 ºC (T4), under a DC bias (VDS= 25 V, IDS= 420 mA/mm) (DC-life test). The devices showed a higher “bump” as the channel temperature is higher (Fig. 1). At 1 MHz, the higher C-V curve slope of the Ni/Au gated HEMTs indicated higher trap density than Mo/Au metallization (Fig. 2). These results highlight that temperature is an acceleration factor in the device degradation, in good agreement with [3]. Interface state density analysis is being performed in order to estimate the trap density and activation energy
Effects of N2 Plasma Pretreatment on the SiN Passivation of AlGaN/GaN HEMT
The impact of in situ low-power plasma pretreatment, prior to silicon-nitride (SiN) deposition, was investigated in AlGaN/GaN high-electron mobility transistors (HEMTs). These studies reveal that the use of plasma in HEMT passivation reduces current-collapse and gate-lag effects. Such treatment is also beneficial to improve gate leakage, and from RF measurements, no degradation of was observed. These beneficial effects of the plasma pretreatment seem to be due to a significant reduction in interface charge density, as shown in this letter using GaN MIS devices, where a decrease of 60% was observed
High Temperature Pulsed and DC Performance of AlInN/GaN HEMTs
The AlGaN/GaN high-electron mobility transistors (HEMTs) have been considered as promising candidates for the next generation of high temperature, high frequency, high-power devices. The potential of GaN-based HEMTs may be improved using an AlInN barrier because of its better lattice match to GaN, resulting in higher sheet carrier densities without piezoelectric polarization [1]. This work has been focused on the study of AlInN HEMTs pulse and DC mode characterization at high temperature
Evaluation of a PET Prototype Using LYSO:Ce Monolithic Detector Block
We have analyzed the performance of a PET demonstrator formed by two sectors of four monolithic detector blocks placed face-to-face. Both front-end and read-out electronics have been evaluated by means of coincidence measurements using a rotating 22Na source placed at the center of the sectors in order to emulate the behavior of a complete full ring. A continuous training method based on neural network (NN) algorithms has been carried out to determine the entrance points over the surface of the detectors. Reconstructed images from 1 MBq 22Na point source and 22Na Derenzo phantom have been obtained using both filtered back projection (FBP) analytic methods and the OSEM 3D iterative algorithm available in the STIR software package [1]. Preliminary data on image reconstruction from a 22Na point source with Ø = 0.25 mm show spatial resolutions from 1.7 to 2.1 mm FWHM in the transverse plane. The results confirm the viability of this design for the development of a full-ring brain PET scanner compatible with magnetic resonance imaging for human studies
Temperature and time dependent threshold voltage characterization of AlGaN/GaN high electron mobility transistors
Relacionado con línea de investigación del GDS del ISOM ver http://www.isom.upm.es/dsemiconductores.ph