40 research outputs found

    Estudio de compuestos As2X3 bajo presión

    Full text link
    Tesis por compendio[ES] El estudio de la materia sometida a condiciones extremas de presión y/o temperatura nos permite ampliar nuestros conocimientos sobre sus propiedades estructurales, elásticas, vibracionales, ópticas, eléctricas y magnéticas; comprender y predecir su comportamiento frente a estas condiciones; y valorar su aplicabilidad en ámbitos tan dispares como la computación cuántica, los semiconductores, la ciencia de materiales, la medicina o la farmacología. La presión es una variable termodinámica relativamente rápida y fácil de modificar que nos permite avanzar en la comprensión del comportamiento de la materia en función de las múltiples propiedades que la definen. Cuando las propiedades de un material no estable en condiciones ambientales mejoran bajo presión, y se prevé que su utilización pueda desarrollar aplicaciones novedosas o mejorar las ya existentes, se puede estudiar la posibilidad de sintetizar este nuevo material a presión ambiente aprovechándonos de las barreras cinéticas entre las transiciones de fase. El desarrollo tecnológico de las técnicas de caracterización de las propiedades de los materiales, así como de los modelos teóricos que permiten realizar cálculos ab initio, junto con la aplicación de altas presiones, han facilitado la consecución de los objetivos de análisis y comprensión de las propiedades estructurales, mecánicas, electrónicas y vibracionales de los compuestos de tipo As2X3 (sesquióxidos y sesquicalcogenuros de arsénico) de esta tesis doctoral. Con este fin se recoge en la presente tesis el compendio de los trabajos realizados en varios compuestos de tipo As2X3, en concreto los compuestos estudiados han sido la arsenolita pura (As4O6), el compuesto resultante al medir la arsenolita con He como medio transmisor de presión (MTP) a altas presiones (As4O6.2He), el oropimente (alfa-As2S3) y el telururo de arsénico (alfa-As2Te3). El análisis y la comprensión de las propiedades de estos compuestos ha supuesto un avance en el estudio de los sesquióxidos y sesquicalcogenuros del grupo 15, y allana el camino para diseñar nuevos sesquicalcogenuros del grupo 15 y compuestos relacionados con propiedades termoeléctricas o aislantes topológicas, tanto a presión ambiente como en condiciones extremas.[CA] L'estudi de la matèria sotmesa a condicions extremes de pressió i/o temperatura ens permet ampliar els nostres coneiximents sobre les seus propietats estructurals, elàstiques, vibracionals, òptiques, eléctriques i magnétiques; comprendre i predir el seu comportament front a aquestes condicions; i valorar la seua aplicabilitat en àmbits tan dispars com la computació cuántica, els semiconductors, la ciència de materials, la medicina o la farmacologia. La pressió és una variable termodinàmica relativament ràpida i fàcil de modificar que ens permet avançar en la comprensió del comportament de la matèria en funció de les múltiples propietats que la defineixen. Quan les propietats d'un material no estable en condicions ambientals milloren sota pressió, i es preveu que la seua utilització puga desenvolupar aplicacions novedoses o millorar les ja existents, es pot estudiar la posibilitat de sintetitzar aquest nou material a pressió ambient aprofitant-nos de les barreres cinètiques entre les transicions de fase. El desenvolupament tecnològic de les técniques de caracterització de les propietats dels materials, així com dels models teòrics que permeten realitzar càlculs ab initio, junt amb l'aplicació d'altes pressions, han facilitat la consecució dels objectius d'análisi i comprensió de les propietats estructurals, mecàniques, electròniques i vibracionals dels compostos de tipus As2X3 (sesquiòxids i sesquicalcogenurs de arsenic) d'aquesta tesi doctoral. Amb aquest fi s'arreplega en la present tesi un compendi dels treballs realitzats a varios compostos de tipus As2X3, en concret els compostos estudiats han segut l'arsenolita pura (As4O6), el compost resultant de mesurar l'arsenolita amb He com a mitjà transmisor de pressió (MTP) a altes pressions (As4O6.2He), l'oropiment (alfa-As2S3) i el telurur d'arsenic (alfa-As2Te3). L'anàlisi i la comprensió de les propietats d'aquestos compostos ha suposat un avanç a l'estudi dels sesquiòxids i sesquicalcogenurs del grup 15, i aplana el camí per a disenyar nous sesquicalcogenurs del grup 15 i compostos relacionats amb propietats termoelèctriques o de aillants topològics, tant a pressió ambient com en condicions extremes.[EN] The study of matter under extreme conditions of pressure and/or temperature allows us to extend our knowledge about their structural, mechanical, vibrational, electrical, optical and magnetic properties; understand and predict their behaviour under these extreme conditions; and validate their possible application in several fields such as quantum computing, semiconductors, material science or pharmacology. Pressure is a thermodynamic variable easy to modify which allows us to advance in the comprehension of the behaviour of the multiple properties of the matter. When the properties of a material unstable at ambient conditions show a significant progress, this material can be postulated as a possible candidate to develop novel properties or improve those already existing; then, the synthesis of this metastable compound can be studied by the application of pressure and temperature and taking advantage of the kinetic barriers that stabilize high pressure phases. The technical development suffered by the characterization techniques, which are used to analyse the properties of materials, together with the theoretical models that allows to perform ab initio calculations, have facilitated to reach the objective of the analysis and understanding of the structural, mechanical, electronic and vibrational properties of the compounds belonging to the As2X3 family (arsenic sesquioxides and sesquichalcogenides) studied in this PhD thesis. To this aim, the present PhD thesis collects a compendium of the works done about several As2X3 compounds. In particular, the compounds studied here have been: pure arsenolite (As4O6), the resulting material from expose the arsenolite with helium as pressure transmitting medium at extreme conditions of pressure (As4O6.2He), orpiment (alpha-As2S3) and arsenic telluride (alpha-As2Te3). The analysis and comprehension of the properties of these compounds have provided a significant advance in the study of sesquioxides and sesquichalcogenides belonging to the group 15, and pave the way to design new sesquichalcogenides of the same group and related compounds with thermoelectric or topological insulating properties, at ambient or under extreme conditions.Cuenca Gotor, VP. (2019). Estudio de compuestos As2X3 bajo presión [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/125699TESISCompendi

    Design and evaluation of a three-dimensional virtual laboratory on vector operations

    Full text link
    [EN] In Physics, many quantities are vectors, and their use requires typical operations such as addition, subtraction, scalar multiplication, scalar product (dot product), vector product (cross product), and scalar triple product. This is a very basic topic in all General Physics courses for Engineering degrees. However, we have detected that some students lack a deep understanding of vector operations and their properties. In this study, we present a virtual laboratory (developed using the tool Easy Java Simulations) for the study and understanding of these topics. The user can introduce the components of the input vectors and gets a three-dimensional representation, which can be scaled and rotated for better visualization. Any of the aforementioned operations can be selected, and the result is shown both numerically and graphically. The user can also modify any represented vector. In this way, the virtual lab provides a real-time visualization of how the change affects the result. The possibility of limiting the changes to either magnitude or direction is also included. The efficiency of the virtual laboratory has been tested analyzing the results obtained in two groups of students (virtual laboratory vs traditional resources). A satisfaction survey has been also carried out.Universitat Politecnica de Valencia, Grant/Award Number: PIME B24Salinas Marín, I.; Gimenez Valentin, MH.; Cuenca Gotor, VP.; Seiz Ortiz, R.; Monsoriu Serra, JA. (2019). Design and evaluation of a three-dimensional virtual laboratory on vector operations. Computer Applications in Engineering Education. 27(3):690-697. https://doi.org/10.1002/cae.22108S690697273Vidaurre, A., Riera, J., Giménez, M. H., & Monsoriu, J. A. (2002). Contribution of digital simulation in visualizing physics processes. Computer Applications in Engineering Education, 10(1), 45-49. doi:10.1002/cae.10016Depcik, C., & Assanis, D. N. (2005). Graphical user interfaces in an engineering educational environment. Computer Applications in Engineering Education, 13(1), 48-59. doi:10.1002/cae.20029Jimoyiannis, A., & Komis, V. (2001). Computer simulations in physics teaching and learning: a case study on students’ understanding of trajectory motion. Computers & Education, 36(2), 183-204. doi:10.1016/s0360-1315(00)00059-2Esquembre, F. (2002). Computers in physics education. Computer Physics Communications, 147(1-2), 13-18. doi:10.1016/s0010-4655(02)00197-2Steinberg, R. N. (2000). Computers in teaching science: To simulate or not to simulate? American Journal of Physics, 68(S1), S37-S41. doi:10.1119/1.19517GiménezMH SalinasI andMonsoriuJA Visualizador de operaciones con vectores (español/valencià/english) 2017.http://hdl.handle.net/10251/84650Accessed February 1 2019.TiplerPAandMoscaG Physics for Scientists and Engineers. New York NY: W.H. Freeman Cop 2008.NaveR HyperPhysics 2016.http://hyperphysics.phy‐astr.gsu.edu/hbase/hph.htmlAccessed February 1 2019.Esquembre, F. (2004). Easy Java Simulations: a software tool to create scientific simulations in Java. Computer Physics Communications, 156(2), 199-204. doi:10.1016/s0010-4655(03)00440-5Complements of Physics course description (2017).http://www.upv.es/titulaciones/GIM/menu_1015238i.htmlAccessed February 1 2019.Basic Physics for Engineering course description (2017).http://www.upv.es/titulaciones/GIEL/menu_1014686i.htmlAccessed February 1 2019

    Study of the orpiment and anorpiment phases of As2S3 under pressure

    Full text link
    [EN] In this work we study the pressure behaviour of the orpiment (monoclinic) and anorpiment (triclinic) layered structures of As2S3 by means of ab initio calculations performed within the density functional theory, as part of an ongoing theoretical and experimental joint effort to provide a comprehensive picture of the bonding of this interesting material and the evolution of its structural, electronic, and vibrational properties under pressure.The authors acknowledge the financial support from the Ministerio de Economia y Competitividad (MINECO) of Spain through Projects No. MAT2013-46649-C04-02-P and MAT2013-46649-C04-03-P. Computer time in the MALTA computer cluster at the University of Oviedo, Spain, is also gratefully acknowledged (MINECO Project No. CSD2007-00045).Randescu, S.; Mújica, A.; Rodríguez-Hernández, P.; Muñoz, A.; Ibañez, J.; Sans-Tresserras, JÁ.; Cuenca Gotor, VP.... (2017). Study of the orpiment and anorpiment phases of As2S3 under pressure. Journal of Physics: Conference Series. 950:042018-042018. https://doi.org/10.1088/1742-6596/950/4/042018S042018042018950Brazhkin, V. V., Katayama, Y., Kondrin, M. V., Lyapin, A. G., & Saitoh, H. (2010). Structural transformation yielding an unusual metallic state in liquidAs2S3under high pressure. Physical Review B, 82(14). doi:10.1103/physrevb.82.140202Gibbs, G. V., Wallace, A. F., Zallen, R., Downs, R. T., Ross, N. L., Cox, D. F., & Rosso, K. M. (2010). Bond Paths and van der Waals Interactions in Orpiment, As2S3. The Journal of Physical Chemistry A, 114(23), 6550-6557. doi:10.1021/jp102391aKampf, A. R., Downs, R. T., Housley, R. M., Jenkins, R. A., & Hyršl, J. (2011). Anorpiment, As2S3, the triclinic dimorph of orpiment. Mineralogical Magazine, 75(6), 2857-2867. doi:10.1180/minmag.2011.075.6.2857Bolotina, N. B., Brazhkin, V. V., Dyuzheva, T. I., Katayama, Y., Kulikova, L. F., Lityagina, L. V., & Nikolaev, N. A. (2014). High-pressure polymorphism of As2S3 and new AsS2 modification with layered structure. JETP Letters, 98(9), 539-543. doi:10.1134/s0021364013220025Bolotina, N. B., Brazhkin, V. V., Dyuzheva, T. I., Lityagina, L. M., Kulikova, L. F., Nikolaev, N. A., & Verin, I. A. (2013). Crystal structure of new AsS2 compound. Crystallography Reports, 58(1), 61-64. doi:10.1134/s1063774513010069Kresse, G., & Hafner, J. (1993). Ab initiomolecular dynamics for liquid metals. Physical Review B, 47(1), 558-561. doi:10.1103/physrevb.47.558Kresse, G., & Furthmüller, J. (1996). Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 6(1), 15-50. doi:10.1016/0927-0256(96)00008-0Kresse, G., & Furthmüller, J. (1996). Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set. Physical Review B, 54(16), 11169-11186. doi:10.1103/physrevb.54.11169Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized Gradient Approximation Made Simple. Physical Review Letters, 77(18), 3865-3868. doi:10.1103/physrevlett.77.3865Perdew, J. P., Ruzsinszky, A., Csonka, G. I., Vydrov, O. A., Scuseria, G. E., Constantin, L. A., … Burke, K. (2008). Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. Physical Review Letters, 100(13). doi:10.1103/physrevlett.100.136406Kresse, G., & Joubert, D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 59(3), 1758-1775. doi:10.1103/physrevb.59.1758Blöchl, P. E. (1994). Projector augmented-wave method. Physical Review B, 50(24), 17953-17979. doi:10.1103/physrevb.50.17953Monkhorst, H. J., & Pack, J. D. (1976). Special points for Brillouin-zone integrations. Physical Review B, 13(12), 5188-5192. doi:10.1103/physrevb.13.5188Grimme, S. (2006). Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Journal of Computational Chemistry, 27(15), 1787-1799. doi:10.1002/jcc.20495Grimme, S., Antony, J., Ehrlich, S., & Krieg, H. (2010). A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. The Journal of Chemical Physics, 132(15), 154104. doi:10.1063/1.3382344Birch, F. (1947). Finite Elastic Strain of Cubic Crystals. Physical Review, 71(11), 809-824. doi:10.1103/physrev.71.809Mujica, A., Rubio, A., Muñoz, A., & Needs, R. J. (2003). High-pressure phases of group-IV, III–V, and II–VI compounds. Reviews of Modern Physics, 75(3), 863-912. doi:10.1103/revmodphys.75.863Alfè, D. (2009). PHON: A program to calculate phonons using the small displacement method. Computer Physics Communications, 180(12), 2622-2633. doi:10.1016/j.cpc.2009.03.01

    Navegación Basada en Prestaciones: Aprendizaje Basado en Proyectos para estudiantes de Aeronavegación

    Full text link
    [EN] In aerospace engineering, motivation is considered a critical factor in the teaching-learning process, especially due to the difficulty of the subjects taught. Active methodologies, focused on student learning, can increase students' motivation and enhance their learning, helping them to persevere through a challenging workload. Previous studies have shown how the implementation of the Project-Based Learning methodology as a working tool in various disciplines is motivating and facilitates the integration of subjects and their permanence in student learning. In this work, the planning and development of this methodology in various subjects of Air Navigation Specific Technology is exposed, integrating the tasks that must be carried out in the different subjects, in lines of action with a common purpose: the development of the project of an airport according to its infrastructures and associated procedures.[ES] En la ingeniería aeroespacial la motivación se considera un factor crítico en el proceso de enseñanza-aprendizaje, sobre todo por la dificultad de las materias impartidas. Las metodologías activas, centradas en el aprendizaje del estudiante, pueden aumentar la motivación de los estudiantes y mejorar su aprendizaje, ayudándoles a perseverar a través de una carga de trabajo desafiante. Estudios previos han demostrado cómo la implantación de la metodología de Aprendizaje Basado en Proyectos como herramienta de trabajo en disciplinas varias, es motivadora y facilita la integración de las materias y su perduración en el aprendizaje del alumnado. En este trabajo se expone la planificación y el desarrollo de esta metodología en varias asignaturas de la Tecnología Específica de Aeronavegación, integrando las tareas que se deben llevar a cabo en las distintas asignaturas, en líneas de acción con un fin común: la elaboración del proyecto de un aeropuerto atendiendo a sus infraestructuras y procedimientos asociados.Este trabajo está enmarcado en el Proyecto de Innovación y Mejora Educativa PIME/19-20/196 con título: ''Navegación Basada en Prestaciones (Performance Based Navigation)'', del Vicerrectorado de Estudios, Calidad y Acreditación de la Universitat Politècnica de València, siendo esta la entidad financiadora (UPV: Convocatoria Aprendizaje + Docencia. Proyectos de Innovación y Mejora Educativa)Cuenca Gotor, VP.; Yuste Pérez, P.; Vila Carbó, JA.; Despujol Zabala, I.; Monsoriu Serra, JA. (2021). Navegación Basada en Prestaciones: Aprendizaje Basado en Proyectos para estudiantes de Aeronavegación. En IN-RED 2021: VII Congreso de Innovación Edicativa y Docencia en Red. Editorial Universitat Politècnica de València. 620-632. https://doi.org/10.4995/INRED2021.2021.13799OCS62063

    GdBO3 and YBO3 crystals under compression

    Full text link
    [EN] High-pressure X-ray diffraction studies on nanocrystals of the GdBO3 and YBO3 rare-earth orthoborates are herein reported up to 17.4(2) and 13.4(2) GPa respectively. The subsequent determination of the room- temperature pressure-volume equations of state is presented and discussed in the context of contemporary publications which contradict the findings of this work. In particular, the isothermal bulk moduli of GdBO3 and YBO3 are found to be 170(13) and 163(13) GPa respectively, almost 50% smaller than recent findings. Our experimental results provide an accurate revision of the high-pressure compressibility behaviour of GdBO3 and YBO3 which is consistent with the known systematics in isomorphic borates and previous ab initio calculations. Finally, we discuss how experimental/analytical errors could have led to unreliable conclusions reported elsewhere.The authors thank the financial support from the Spanish Ministerio de Ciencia, Innovacion y Universidades, Spanish Research Agency (AEI), Generalitat Valenciana, and European Fund for Regional Development (ERDF, FEDER) under grants nos. FIS2017-83295-P, MAT2016-75586-C4-1/2/3-P, RTI2018-101020-BI00, PID2019-106383 GB-C41/C42/C43, RED2018-102612-T (MALTA Consolier Team), and Prometeo/2018/123 (EFIMAT). R.T. acknowledges funding from the Spanish MINECO via the Juan de la Cierva Formacion program (FJC2018-036185-I), and J.A.S. acknowledges funding from the Ramon y Cajal Fellowship Program (RYC-2015-17482). We also thank ALBA synchrotron light source for funded experiments 2016021648 and 2016021668 at the MSPD-BL04 beamline.Turnbull, R.; Errandonea, D.; Sans-Tresserras, JÁ.; Cuenca-Gotor, VP.; Vilaplana Cerda, RI.; Ibáñez, J.; Popescu, C.... (2021). GdBO3 and YBO3 crystals under compression. Journal of Alloys and Compounds. 866:1-6. https://doi.org/10.1016/j.jallcom.2021.158962S1686

    Pressure-Driven Isostructural Phase Transition in InNbO4: In Situ Experimental and Theoretical Investigations

    Full text link
    "This document is the Accepted Manuscript version of a Published Work that appeared in final form in Inorganic Chemistry, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://pubs.acs.org/page/policy/articlesonrequest/index.html"[EN] The high-pressure behavior of technologically important visible-light photocatalytic semiconductor In.NbO4, adopting a monoclinic wolframite-type structure at ambient conditions, was investigated using synchrotron-based X-ray diffraction, Raman spectroscopic measurements, and first-principles calculations. The experimental results indicate the occurrence of a pressure-induced isostructural phase transition in the studied compound beyond 10.8 GPa. The large volume collapse associated with the phase transition and the coexistence of two phases observed over a wide range of pressure shows the nature of transition to be first-order. There is an increase in the oxygen anion coordination number around In and Nb cations from six to eight at the phase transition. The ambient-pressure phase has been recovered on pressure release. The experimental pressure volume data when fitted to a Birch-Murnaghan equation of states yields the value of ambient pressure bulk modulus as 179(2) and 231(4) GPa for the low and high-pressure phases, respectively. The pressure dependence of the Raman mode frequencies and Gruneisen parameters was determined for both phases by experimental and theoretical methods. The same information is obtained for the infrared modes from first-principles calculations. Results from theoretical calculations corroborate the experimental findings. They also provide information on the compressibility of interatomic bonds, which is correlated with the macroscopic properties of InNbO4.This research was supported by the Spanish Ministerio de Economia y Competitividad (MINECO), the Spanish Research Agency (AEI), and the European Fund for Regional Development (FEDER) under Grant Nos. MAT2013-46649-004-01/02/03-P, MAT2016-75586-C4-1/2/3-P, and MAT2015-71070-REDC (MALTA Consolider). J.A.S. acknowledges financial support through the Ramon y Cajal Fellowship.Garg, AB.; Errandonea, D.; Popescu, C.; Martínez-García, D.; Pellicer Porres, J.; Rodríguez-Hernández, P.; Muñoz, A.... (2017). Pressure-Driven Isostructural Phase Transition in InNbO4: In Situ Experimental and Theoretical Investigations. Inorganic Chemistry. 56(9):5420-5430. https://doi.org/10.1021/acs.inorgchem.7b00437S5420543056

    Smartphone: a new device for teaching Physics

    Full text link
    [EN] This paper reports on the use of smartphone’s sensors to perform several experiments designed to teach fundamentals of Physics. We have adapted traditional physics laboratory sessions to the use of the different sensors that can be found in a typical smartphone, such as an accelerometer, and light and magnetic field sensors. The existence of a large repository of free AndroidTM and AppleTM applications which exploit the characteristics of these sensors facilitates the design of new experiments. A survey was done to the students in order to obtain feedback and to evaluate the success of the experience. The results of the survey showed a good acceptance of this method triggering their curiosity, with an average mark of 9 over 10. This project offers to the student a new way to think on smartphones as an attractive tool for possible application in experimental measurements and scientific demonstrations and not only as a socializing tool.Sans, JA.; Manjón Herrera, FJ.; Cuenca Gotor, VP.; Giménez Valentín, MH.; Salinas, I.; Barreiro Diez, JA.; Monsoriu Serra, JA.... (2015). Smartphone: a new device for teaching Physics. En 1ST INTERNATIONAL CONFERENCE ON HIGHER EDUCATION ADVANCES (HEAD' 15). Editorial Universitat Politècnica de València. 415-422. https://doi.org/10.4995/HEAD15.2015.332OCS41542

    Diseño y evaluación de un laboratorio virtual para visualizar momentos de un vector deslizante en 3D

    Full text link
    [EN] The use of multimedia tools for the development and implementation of teaching material is considered of paramount importance for first degree courses. Thus, we have observed, in fundamentals of Physics subjects, how the use of this kind of didactic material increases the motivation and the learning curve of the student. In this work, we present a virtual lab for the calculation of moments that allow multiple selections such as the vector representation, its action line and the moment in a 3D environment. This applet allows the user modifying the point of view and the scale in an interactive way. Besides the visualization, this virtual lab allows the calculation of the moment of a sliding vector with respect to an axis and perform different operation between them. Additionally, it helps to understand the relation between the velocity at a point and the angular velocity of the rigid body in rotation to whom it belongs, the moment of a force with respect to an axis, and the way that this force affects the rotation. All of this supports the development of several transversal skills.[ES] El uso de herramientas multimedia para el desarrollo e implementación de material didáctico se considera de una importancia capital para los primeros cursos de grado. Así, en las asignaturas de fundamentos de Física hemos observado cómo el uso de esta clase de material aumenta tanto la satisfacción como el aprendizaje del alumno. En este trabajo, presentamos un laboratorio virtual para el cálculo de momentos que permite múltiples opciones como la representación del vector, su línea de acción y su momento en un entorno 3D. Este applet permite al usuario modificar tanto el punto de vista como la escala de forma interactiva. Además de la visualización, este laboratorio virtual permite calcular el momento del vector deslizante respecto a un eje y realizar operaciones entre ellos. Asimismo, ayuda a comprender la relación entre la velocidad de un punto y la velocidad angular del sólido rígido en rotación al que pertenece, el momento de una fuerza respecto a un eje, y la forma en que dicha fuerza afecta a una rotación. Todo esto sustenta el desarrollo de diversas competencias transversales.JAS agradece al programa Ramón y Cajal la financiación y al Instituto de Diseño para la Fabricación y Producción Automatizada (IDF-UPV) por su apoyo.Gómez Tejedor, JA.; Monsoriu Serra, JA.; Salinas Marín, I.; Sans Tresserras, JÁ.; Cuenca Gotor, VP.; Giménez Valentín, MH. (2018). Diseño y evaluación de un laboratorio virtual para visualizar momentos de un vector deslizante en 3D. En IN-RED 2018. IV Congreso Nacional de Innovación Educativa y Docencia en Red. Editorial Universitat Politècnica de València. 299-312. https://doi.org/10.4995/INRED2018.2018.8744OCS29931

    Structural and Lattice-Dynamical Properties of Tb2O3 under Compression: A Comparative Study with Rare Earth and Related Sesquioxides

    Get PDF
    [EN] We report a joint experimental and theoretical investigation of the high pressure structural and vibrational properties of terbium sesquioxide (Tb2O3). Powder X-ray diffraction and Raman scattering measurements show that cubic Ia (3 ) over bar (C-type) Tb2O3 undergoes two phase transitions up to 25 GPa. We observe a first irreversible reconstructive transition to the monoclinic C2/m (B-type) phase at similar to 7 GPa and a subsequent reversible displacive transition from the monoclinic to the trigonal P (3) over bar m1 (A-type) phase at similar to I-2 GPa. Thus, Tb2O3 is found to follow the well- known C -> B -> A phase transition sequence found in other cubic rare earth sesquioxides with cations of larger atomic mass than Tb. Our ab initio theoretical calculations predict phase transition pressures and bulk moduli for the three phases in rather good agreement with experimental results. Moreover, Raman-active modes of the three phases have been monitored as a function of pressure, while lattice-dynamics calculations have allowed us to confirm the assignment of the experimental phonon modes in the C- and A-type phases as well as to make a tentative assignment of the symmetry of most vibrational modes in the B-type phase. Finally, we extract the bulk moduli and the Raman-active mode frequencies together with their pressure coefficients for the three phases of Tb2O3 . These results are thoroughly compared and discussed in relation to those reported for rare earth and other related sesquioxides as well as with new calculations for selected sesquioxides. It is concluded that the evolution of the volume and bulk modulus of all the three phases of these technologically relevant compounds exhibit a nearly linear trend with respect to the third power of the ionic radii of the cations and that the values of the bulk moduli for the three phases depend on the filling of the f orbitals.The authors are thankful for the financial support of Generalitat Valenciana under Project PROMETEO 2018/123-EFIMAT and of the Spanish Ministerio de Economia y Competitividad under Projects MAT2015-71035-R, MAT2016-75586-C4-2/3/4-P, and FIS2017-2017-83295-P as well as MALTA Consolider Team research network under project RED2018-102612-T. J.A.S. also acknowledges the Ramon y Cajal program for funding support through RYC-2015-17482. A.M. and P.R.-H. acknowledge computing time provided by Red Española de Supercomputación (RES) and the MALTA Consolider Team cluster. HP-XRD experiments were performed at MPSD beamline of Alba Synchrotron (experiment no. 2016071772). We would like to thank Oriol Blázquez (Universitat de Barcelona) for his contribution to the Raman measurements.Ibañez, J.; Sans-Tresserras, JÁ.; Cuenca-Gotor, VP.; Oliva, R.; Gomis, O.; Rodríguez-Hernández, P.; Muñoz, A.... (2020). Structural and Lattice-Dynamical Properties of Tb2O3 under Compression: A Comparative Study with Rare Earth and Related Sesquioxides. Inorganic Chemistry. 59(14):9648-9666. https://doi.org/10.1021/acs.inorgchem.0c00834S964896665914Pan, T.-M., Chen, F.-H., & Jung, J.-S. (2010). Structural and electrical characteristics of high-k Tb2O3 and Tb2TiO5 charge trapping layers for nonvolatile memory applications. Journal of Applied Physics, 108(7), 074501. doi:10.1063/1.3490179Kao, C. H., Liu, K. C., Lee, M. H., Cheng, S. N., Huang, C. H., & Lin, W. K. (2012). High dielectric constant terbium oxide (Tb2O3) dielectric deposited on strained-Si:C. Thin Solid Films, 520(8), 3402-3405. doi:10.1016/j.tsf.2011.10.173Gray, N. W., Prestgard, M. C., & Tiwari, A. (2014). Tb2O3 thin films: An alternative candidate for high-k dielectric applications. Applied Physics Letters, 105(22), 222903. doi:10.1063/1.4903072Geppert, I., Eizenberg, M., Bojarczuk, N. A., Edge, L. F., Copel, M., & Guha, S. (2010). Determination of band offsets, chemical bonding, and microstructure of the (TbxSc1−x)2O3/Si system. Journal of Applied Physics, 108(2), 024105. doi:10.1063/1.3427554Belaya, S. V., Bakovets, V. V., Boronin, A. I., Koshcheev, S. V., Lobzareva, M. N., Korolkov, I. V., & Stabnikov, P. A. (2014). Terbium oxide films grown by chemical vapor deposition from terbium(III) dipivaloylmethanate. Inorganic Materials, 50(4), 379-386. doi:10.1134/s0020168514040037Bakovets, V. V., Belaya, S. V., Lobzareva, M. N., & Maksimovskii, E. A. (2014). Kinetics of terbium oxide film growth from Tb(dpm)3 vapor. Inorganic Materials, 50(6), 576-581. doi:10.1134/s0020168514060016ZINKEVICH, M. (2007). Thermodynamics of rare earth sesquioxides. Progress in Materials Science, 52(4), 597-647. doi:10.1016/j.pmatsci.2006.09.002Warshaw, I., & Roy, R. (1961). POLYMORPHISM OF THE RARE EARTH SESQUIOXIDES1. The Journal of Physical Chemistry, 65(11), 2048-2051. doi:10.1021/j100828a030Brauer, G., & Pfeiffer, B. (1965). Mischphasen aus Praseodym(III)-oxid und Terbium(III)-oxid. Zeitschrift f�r anorganische und allgemeine Chemie, 341(5-6), 237-243. doi:10.1002/zaac.19653410503Shevthenko, A. V., & Lopato, L. M. (1985). DTA method applikation to the highest refractory oxide systems investigation. Thermochimica Acta, 93, 537-540. doi:10.1016/0040-6031(85)85135-2Hoekstra, H. R., & Gingerich, K. A. (1964). High-Pressure B-Type Polymorphs of Some Rare-Earth Sesquioxides. Science, 146(3648), 1163-1164. doi:10.1126/science.146.3648.1163Sawyer, J. O., Hyde, B. G., & Eyring, L. (1965). Pressure and Polymorphism in the Rare Earth Sesquioxides. Inorganic Chemistry, 4(3), 426-427. doi:10.1021/ic50025a043Manjón, F., Sans, J., Ibáñez, J., & Pereira, A. (2019). Pressure-Induced Phase Transitions in Sesquioxides. Crystals, 9(12), 630. doi:10.3390/cryst9120630Jiang, S., Liu, J., Lin, C., Bai, L., Xiao, W., Zhang, Y., … Tang, L. (2010). Pressure-induced phase transition in cubic Lu2O3. Journal of Applied Physics, 108(8), 083541. doi:10.1063/1.3499301Lin, C.-M., Wu, K.-T., Hung, T.-L., Sheu, H.-S., Tsai, M.-H., Lee, J.-F., & Lee, J.-J. (2010). Phase transitions in under high pressure. Solid State Communications, 150(33-34), 1564-1569. doi:10.1016/j.ssc.2010.05.046Meyer, C., Sanchez, J. P., Thomasson, J., & Itié, J. P. (1995). Mössbauer and energy-dispersive x-ray-diffraction studies of the pressure-induced crystallographic phase transition inC-typeYb2O3. Physical Review B, 51(18), 12187-12193. doi:10.1103/physrevb.51.12187Pandey, S. D., Samanta, K., Singh, J., Sharma, N. D., & Bandyopadhyay, A. K. (2013). Anharmonic behavior and structural phase transition in Yb2O3. AIP Advances, 3(12), 122123. doi:10.1063/1.4858421Sahu, P. C., Lonappan, D., & Shekar, N. V. C. (2012). High Pressure Structural Studies on Rare-Earth Sesquioxides. Journal of Physics: Conference Series, 377, 012015. doi:10.1088/1742-6596/377/1/012015Irshad, K. A., Anees, P., Sahoo, S., Sanjay Kumar, N. R., Srihari, V., Kalavathi, S., & Chandra Shekar, N. V. (2018). Pressure induced structural phase transition in rare earth sesquioxide Tm2O3: Experiment and ab initio calculations. Journal of Applied Physics, 124(15), 155901. doi:10.1063/1.5049223Yan, D., Wu, P., Zhang, S. P., Liang, L., Yang, F., Pei, Y. L., & Chen, S. (2013). Assignments of the Raman modes of monoclinic erbium oxide. Journal of Applied Physics, 114(19), 193502. doi:10.1063/1.4831663Ren, X., Yan, X., Yu, Z., Li, W., & Wang, L. (2017). Photoluminescence and phase transition in Er2O3 under high pressure. Journal of Alloys and Compounds, 725, 941-945. doi:10.1016/j.jallcom.2017.07.219Guo, Q., Zhao, Y., Jiang, C., Mao, W. L., Wang, Z., Zhang, J., & Wang, Y. (2007). Pressure-Induced Cubic to Monoclinic Phase Transformation in Erbium Sesquioxide Er2O3. Inorganic Chemistry, 46(15), 6164-6169. doi:10.1021/ic070154gLonappan, D., Shekar, N. V. C., Ravindran, T. R., & Sahu, P. C. (2010). High-pressure phase transition in Ho2O3. Materials Chemistry and Physics, 120(1), 65-67. doi:10.1016/j.matchemphys.2009.10.022Jiang, S., Liu, J., Li, X., Bai, L., Xiao, W., Zhang, Y., … Tang, L. (2011). Phase transformation of Ho2O3at high pressure. Journal of Applied Physics, 110(1), 013526. doi:10.1063/1.3603027Pandey, S. D., Samanta, K., Singh, J., Sharma, N. D., & Bandyopadhyay, A. K. (2014). Raman scattering of rare earth sesquioxide Ho2O3: A pressure and temperature dependent study. Journal of Applied Physics, 116(13), 133504. doi:10.1063/1.4896832Yan, X., Ren, X., He, D., Chen, B., & Yang, W. (2014). Mechanical behaviors and phase transition of Ho2O3nanocrystals under high pressure. Journal of Applied Physics, 116(3), 033507. doi:10.1063/1.4890341Sharma, N. D., Singh, J., Dogra, S., Varandani, D., Poswal, H. K., Sharma, S. M., & Bandyopadhyay, A. K. (2011). Pressure-induced anomalous phase transformation in nano-crystalline dysprosium sesquioxide. Journal of Raman Spectroscopy, 42(3), 438-444. doi:10.1002/jrs.2720Jiang, S., Liu, J., Lin, C., Bai, L., Zhang, Y., Li, X., … Wang, H. (2013). Structural transformations in cubic Dy2O3 at high pressures. Solid State Communications, 169, 37-41. doi:10.1016/j.ssc.2013.06.027Chen, H., He, C., Gao, C., Ma, Y., Zhang, J., Wang, X., … Zou, G. (2007). The structural transition of Gd2O3nanoparticles induced by high pressure. Journal of Physics: Condensed Matter, 19(42), 425229. doi:10.1088/0953-8984/19/42/425229Hai-Yong, C., Chun-Yuan, H., Chun-Xiao, G., Jia-Hua, Z., Shi-Yong, G., Hong-Liang, L., … Guang-Tian, Z. (2007). Structural Transition of Gd 2 O 3  :Eu Induced by High Pressure. Chinese Physics Letters, 24(1), 158-160. doi:10.1088/0256-307x/24/1/043Zhang, F. X., Lang, M., Wang, J. W., Becker, U., & Ewing, R. C. (2008). Structural phase transitions of cubicGd2O3at high pressures. Physical Review B, 78(6). doi:10.1103/physrevb.78.064114Dilawar, N., Varandani, D., Mehrotra, S., Poswal, H. K., Sharma, S. M., & Bandyopadhyay, A. K. (2008). Anomalous high pressure behaviour in nanosized rare earth sesquioxides. Nanotechnology, 19(11), 115703. doi:10.1088/0957-4484/19/11/115703Bai, L., Liu, J., Li, X., Jiang, S., Xiao, W., Li, Y., … Zhang, D. (2009). Pressure-induced phase transformations in cubic Gd2O3. Journal of Applied Physics, 106(7), 073507. doi:10.1063/1.3236580Zou, X., Gong, C., Liu, B., Li, Q., Li, Z., Liu, B., … Song, H. (2011). X-ray diffraction of cubic Gd2 O3 /Er under high pressure. physica status solidi (b), 248(5), 1123-1127. doi:10.1002/pssb.201000706Zhang, C. C., Zhang, Z. M., Dai, R. C., Wang, Z. P., & Ding, Z. J. (2011). High Pressure Luminescence and Raman Studies on the Phase Transition of Gd2O3:Eu3+ Nanorods. Journal of Nanoscience and Nanotechnology, 11(11), 9887-9891. doi:10.1166/jnn.2011.5228Yang, X., Li, Q., Liu, Z., Bai, X., Song, H., Yao, M., … Liu, B. (2013). Pressure-Induced Amorphization in Gd2O3/Er3+ Nanorods. The Journal of Physical Chemistry C, 117(16), 8503-8508. doi:10.1021/jp312705uChen, G., Haire, R. G., & Peterson, J. R. (1991). Effect of pressure on cubic (C-type) Eu2O3studied via Eu3+luminescence. High Pressure Research, 6(6), 371-377. doi:10.1080/08957959208201045Chen, G., Stump, N. ., Haire, R. ., & Peterson, J. . (1992). Study of the phase behavior of Eu2O3 under pressure via luminescence of Eu3+. Journal of Alloys and Compounds, 181(1-2), 503-509. doi:10.1016/0925-8388(92)90347-cDilawar, N., Varandani, D., Pandey, V. P., Kumar, M., Shivaprasad, S. M., Sharma, P. K., & Bandyopadhyay, A. K. (2006). Structural Transition in Nanostructured Eu2O3 Under High Pressures. Journal of Nanoscience and Nanotechnology, 6(1), 105-113. doi:10.1166/jnn.2006.17913Sheng, J., Li-Gang, B., Jing, L., Wan-Sheng, X., Xiao-Dong, L., Yan-Chun, L., … Li-Rong, Z. (2009). The Phase Transition of Eu 2 O 3 under High Pressures. Chinese Physics Letters, 26(7), 076101. doi:10.1088/0256-307x/26/7/076101Irshad, K. A., Chandra Shekar, N. V., Srihari, V., Pandey, K. K., & Kalavathi, S. (2017). High pressure structural phase transitions in Ho: Eu2O3. Journal of Alloys and Compounds, 725, 911-915. doi:10.1016/j.jallcom.2017.07.224Yu, Z., Wang, Q., Ma, Y., & Wang, L. (2017). X-ray diffraction and spectroscopy study of nano-Eu2O3 structural transformation under high pressure. Journal of Alloys and Compounds, 701, 542-548. doi:10.1016/j.jallcom.2017.01.143Guo, Q., Zhao, Y., Jiang, C., Mao, W. L., & Wang, Z. (2008). Phase transformation in Sm2O3 at high pressure: In situ synchrotron X-ray diffraction study and ab initio DFT calculation. Solid State Communications, 145(5-6), 250-254. doi:10.1016/j.ssc.2007.11.019Jiang, S., Liu, J., Lin, C., Li, X., & Li, Y. (2013). High-pressure x-ray diffraction and Raman spectroscopy of phase transitions in Sm2O3. Journal of Applied Physics, 113(11), 113502. doi:10.1063/1.4795504Liu, D., Lei, W., Li, Y., Ma, Y., Hao, J., Chen, X., … Zou, G. (2009). High-Pressure Structural Transitions of Sc2O3by X-ray Diffraction, Raman Spectra, and Ab Initio Calculations. Inorganic Chemistry, 48(17), 8251-8256. doi:10.1021/ic900889vYusa, H., Tsuchiya, T., Sata, N., & Ohishi, Y. (2009). High-Pressure Phase Transition to the Gd2S3 Structure in Sc2O3: A New Trend in Dense Structures in Sesquioxides. Inorganic Chemistry, 48(16), 7537-7543. doi:10.1021/ic9001253Ovsyannikov, S. V., Bykova, E., Bykov, M., Wenz, M. D., Pakhomova, A. S., Glazyrin, K., … Dubrovinsky, L. (2015). Structural and vibrational properties of single crystals of Scandia, Sc2O3 under high pressure. Journal of Applied Physics, 118(16), 165901. doi:10.1063/1.4933391Husson, E., Proust, C., Gillet, P., & Itié, J. . (1999). Phase transitions in yttrium oxide at high pressure studied by Raman spectroscopy. Materials Research Bulletin, 34(12-13), 2085-2092. doi:10.1016/s0025-5408(99)00205-6Bai, X., Song, H. W., Liu, B. B., Hou, Y. Y., Pan, G. H., & Ren, X. G. (2008). Effects of High Pressure on the Luminescent Properties of Nanocrystalline and Bulk Y2O3:Eu3+. Journal of Nanoscience and Nanotechnology, 8(3), 1404-1409. doi:10.1166/jnn.2008.18204Jovanić, B. R., Dramićanin, M., Viana, B., Panić, B., & Radenković, B. (2008). High-pressure optical studies of Y2O3:Eu3+nanoparticles. Radiation Effects and Defects in Solids, 163(12), 925-931. doi:10.1080/10420150802082705Wang, L., Pan, Y., Ding, Y., Yang, W., Mao, W. L., Sinogeikin, S. V., … Mao, H. (2009). High-pressure induced phase transitions of Y2O3 and Y2O3:Eu3+. Applied Physics Letters, 94(6), 061921. doi:10.1063/1.3082082Wang, L., Yang, W., Ding, Y., Ren, Y., Xiao, S., Liu, B., … Mao, H. (2010). Size-Dependent Amorphization of NanoscaleY2O3at High Pressure. Physical Review Letters, 105(9). doi:10.1103/physrevlett.105.095701Halevy, I., Carmon, R., Winterrose, M. L., Yeheskel, O., Tiferet, E., & Ghose, S. (2010). Pressure-induced structural phase transitions in Y2O3sesquioxide. Journal of Physics: Conference Series, 215, 012003. doi:10.1088/1742-6596/215/1/012003Dai, R. C., Zhang, Z. M., Zhang, C. C., & Ding, Z. J. (2010). Photoluminescence and Raman Studies of Y2O3:Eu3+ Nanotubes Under High Pressure. Journal of Nanoscience and Nanotechnology, 10(11), 7629-7633. doi:10.1166/jnn.2010.2752DAI, R., WANG, Z., ZHANG, Z., & DING, Z. (2010). Photoluminescence study of SiO2 coated Eu3+:Y2O3 core-shells under high pressure. Journal of Rare Earths, 28, 241-245. doi:10.1016/s1002-0721(10)60275-xYusa, H., Tsuchiya, T., Sata, N., & Ohishi, Y. (2010). Dense Yttria Phase Eclipsing the A-Type Sesquioxide Structure: High-Pressure Experiments and ab initio Calculations. Inorganic Chemistry, 49(10), 4478-4485. doi:10.1021/ic100042zBose, P. P., Gupta, M. K., Mittal, R., Rols, S., Achary, S. N., Tyagi, A. K., & Chaplot, S. L. (2012). High Pressure Phase Transitions in Yttria, Y2O3. Journal of Physics: Conference Series, 377, 012036. doi:10.1088/1742-6596/377/1/012036Srivastava, A. M., Renero-Lecuna, C., Santamaría-Pérez, D., Rodríguez, F., & Valiente, R. (2014). Pressure-induced Pr3+ 3P0 luminescence in cubic Y2O3. Journal of Luminescence, 146, 27-32. doi:10.1016/j.jlumin.2013.09.028Yamanaka, T., Nagai, T., Okada, T., & Fukuda, T. (2005). Structure change of Mn2O3under high pressure and pressure-induced transition. Zeitschrift für Kristallographie - Crystalline Materials, 220(11), 938-945. doi:10.1524/zkri.2005.220.11_2005.938Santillán, J., Shim, S.-H., Shen, G., & Prakapenka, V. B. (2006). High-pressure phase transition in Mn2O3: Application for the crystal structure and preferred orientation of the CaIrO3type. Geophysical Research Letters, 33(15). doi:10.1029/2006gl026423Shim, S.-H., LaBounty, D., & Duffy, T. S. (2011). Raman spectra of bixbyite, Mn2O3, up to 40 GPa. Physics and Chemistry of Minerals, 38(9), 685-691. doi:10.1007/s00269-011-0441-4Hong, F., Yue, B., Hirao, N., Liu, Z., & Chen, B. (2017). Significant improvement in Mn2O3 transition metal oxide electrical conductivity via high pressure. Scientific Reports, 7(1). doi:10.1038/srep44078Yusa, H., Tsuchiya, T., Sata, N., & Ohishi, Y. (2008). Rh2O3(II)-type structures inGa2O3andIn2O3under high pressure: Experiment and theory. Physical Review B, 77(6). doi:10.1103/physrevb.77.064107Liu, D., Lei, W. W., Zou, B., Yu, S. D., Hao, J., Wang, K., … Zou, G. T. (2008). High-pressure x-ray diffraction and Raman spectra study of indium oxide. Journal of Applied Physics, 104(8), 083506. doi:10.1063/1.2999369Qi, J., Liu, J. F., He, Y., Chen, W., & Wang, C. (2011). Compression behavior and phase transition of cubic In2O3 nanocrystals. Journal of Applied Physics, 109(6), 063520. doi:10.1063/1.3561363Garcia-Domene, B., Ortiz, H. M., Gomis, O., Sans, J. A., Manjón, F. J., Muñoz, A., … Tyagi, A. K. (2012). High-pressure lattice dynamical study of bulk and nanocrystalline In2O3. Journal of Applied Physics, 112(12), 123511. doi:10.1063/1.4769747García-Domene, B., Sans, J. A., Gomis, O., Manjón, F. J., Ortiz, H. M., Errandonea, D., … Segura, A. (2014). Pbca-Type In2O3: The High-Pressure Post-Corundum phase at Room Temperature. The Journal of Physical Chemistry C, 118(35), 20545-20552. doi:10.1021/jp5061599Gomis, O., Santamaría-Pérez, D., Ruiz-Fuertes, J., Sans, J. A., Vilaplana, R., Ortiz, H. M., … Mollar, M. (2014). High-pressure structural and elastic properties of Tl2O3. Journal of Applied Physics, 116(13), 133521. doi:10.1063/1.4897241Mcclure, J. P. High Pressure Phase Transistions in the Lanthanide Sesquioxides. Ph.D. Thesis, University of Nevada, Las Vegas, 2009, pp 1–154.Hirosaki, N., Ogata, S., & Kocer, C. (2003). Ab initio calculation of the crystal structure of the lanthanide Ln2O3 sesquioxides. Journal of Alloys and Compounds, 351(1-2), 31-34. doi:10.1016/s0925-8388(02)01043-5Marsella, L., & Fiorentini, V. (2004). Structure and stability of rare-earth and transition-metal oxides. Physical Review B, 69(17). doi:10.1103/physrevb.69.172103Petit, L., Svane, A., Szotek, Z., & Temmerman, W. M. (2005). First-principles study of rare-earth oxides. Physical Review B, 72(20). doi:10.1103/physrevb.72.205118WU, B., ZINKEVICH, M., WANG, C., & ALDINGER, F. (2006). Ab initio energetic study of oxide ceramics with rare-earth elements. Rare Metals, 25(5), 549-555. doi:10.1016/s1001-0521(06)60097-1Singh, N., Saini, S. M., Nautiyal, T., & Auluck, S. (2006). Electronic structure and optical properties of rare earth sesquioxides (R2O3, R=La, Pr, and Nd). Journal of Applied Physics, 100(8), 083525. doi:10.1063/1.2353267Mikami, M., & Nakamura, S. (2006). Electronic structure of rare-earth sesquioxides and oxysulfides. Journal of Alloys and Compounds, 408-412, 687-692. doi:10.1016/j.jallcom.2005.01.068Wu, B., Zinkevich, M., Aldinger, F., Wen, D., & Chen, L. (2007). Ab initio study on structure and phase transition of A- and B-type rare-earth sesquioxides Ln2O3 (Ln=La–Lu, Y, and Sc) based on density function theory. Journal of Solid State Chemistry, 180(11), 3280-3287. doi:10.1016/j.jssc.2007.09.022Rahm, M., & Skorodumova, N. V. (2009). Phase stability of the rare-earth sesquioxides under pressure. Physical Review B, 80(10). doi:10.1103/physrevb.80.104105Jiang, H., Gomez-Abal, R. I., Rinke, P., & Scheffler, M. (2009). Localized and Itinerant States in Lanthanide Oxides United byGW @ LDA+U. Physical Review Letters, 102(12). doi:10.1103/physrevlett.102.126403Gillen, R., Clark, S. J., & Robertson, J. (2013). Nature of the electronic band gap in lanthanide oxides. Physical Review B, 87(12). doi:10.1103/physrevb.87.125116Richard, D., Muñoz, E. L., Rentería, M., Errico, L. A., Svane, A., & Christensen, N. E. (2013). AbinitioLSDA and LSDA+Ustudy of pure and Cd-doped cubic lanthanide sesquioxides. Physical Review B, 88(16). doi:10.1103/physrevb.88.165206Richard, D., Errico, L. A., & Rentería, M. (2016). Structural properties and the pressure-induced C → A phase transition of lanthanide sesquioxides from DFT and DFT + U calculations. Journal of Alloys and Compounds, 664, 580-589. doi:10.1016/j.jallcom.2015.12.236Ogawa, T., Otani, N., Yokoi, T., Fisher, C. A. J., Kuwabara, A., Moriwake, H., … Takata, M. (2018). Density functional study of the phase stability and Raman spectra of Yb2O3, Yb2SiO5 and Yb2Si2O7 under pressure. Physical Chemistry Chemical Physics, 20(24), 16518-16527. doi:10.1039/c8cp02497aPathak, A. K., & Vazhappilly, T. (2018). Ab Initio Study on Structure, Elastic, and Mechanical Properties of Lanthanide Sesquioxides. physica status solidi (b), 255(6), 1700668. doi:10.1002/pssb.201700668Lonappan, D., Chandra Shekar, N. V., Sahu, P. C., Kumar, J., Paul, R., & Paul, P. (2010). Unusually large structural stability of terbium oxide phase under high pressure. Journal of Alloys and Compounds, 490(1-2), 47-49. doi:10.1016/j.jallcom.2009.10.068Veber, P., Velázquez, M., Gadret, G., Rytz, D., Peltz, M., & Decourt, R. (2015). Flux growth at 1230 °C of cubic Tb2O3single crystals and characterization of their optical and magnetic properties. CrystEngComm, 17(3), 492-497. doi:10.1039/c4ce02006eIbáñez,
    corecore