14 research outputs found

    Public participation and agency discretion in rulemaking at the Federal Communications Commission

    No full text
    In recent years, many practitioners, policymakers, and scholars have embraced participatory politics in communications policymaking at the Federal Communications Commission (FCC) with the expectation that mass involvement by the public will—and should—influence regulatory outcomes. However, calls for participation may not be sufficient; a commitment to public-spirited decision making among agency officials is also needed alongside procedural safeguards for participation. The following analysis uses a Habermasian framework to move beyond participatory politics and advocates for a deliberative understanding of the role of the public and policymakers in producing legitimate outcomes. Looking at legal and legislative history of the Commission and of administrative procedure more generally, the article reconsiders the value of agency discretion and turns attention to the importance of public participation in debates about communications regulation outside the rulemaking system. If members of the public generate, circulate, and make audible their opinions in a public sphere and agency officials are open to and active listeners of a public sphere, agency discretion can guide officials towards public-spirited rather than narrowly interested decisions. Overall, Habermas's model suggests that policymakers and public coproduce legitimacy in a process that is doubly challenging but arguably more profound

    Estimating CDKN2A mutation carrier probability among global familial melanoma cases using GenoMELPREDICT

    No full text
    Background: Although rare in the general population, highly penetrant germline mutations in CDKN2A are responsible for 5%-40% of melanoma cases reported in melanoma-prone families. We sought to determine whether MELPREDICT was generalizable to a global series of families with melanoma and whether performance improvements can be achieved.Methods: In total, 2116 familial melanoma cases were ascertained by the international GenoMEL Consortium. We recapitulated the MELPREDICT model within our data (GenoMELPREDICT) to assess performance improvements by adding phenotypic risk factors and history of pancreatic cancer. We report areas under the curve (AUC) with 95% confidence intervals (CIs) along with net reclassification indices (NRIs) as performance metrics.Results: MELPREDICT performed well (AUC 0.752, 95% CI 0.730-0.775), and GenoMELPREDICT performance was similar (AUC 0.748, 95% CI 0.726-0.771). Adding a reported history of pancreatic cancer yielded discriminatory improvement (P < .0001) in GenoMELPREDICT (AUC 0.772, 95% CI 0.750-0.793, NRI 0.40). Including phenotypic risk factors did not improve performance.Conclusion: The MELPREDICT model functioned well in a global data set of familial melanoma cases. Adding pancreatic cancer history improved model prediction. GenoMELPREDICT is a simple tool for predicting CDKN2A mutational status among melanoma patients from melanoma-prone families and can aid in directing these patients to receive genetic testing or cancer risk counseling.Hereditary cancer genetic

    Rare and low-frequency coding variants alter human adult height

    No full text
    Pathophysiology, epidemiology and therapy of agein

    The power of genetic diversity in genome-wide association studies of lipids (vol 600, pg 675, 2021)

    Get PDF
    Metabolic health: pathophysiological trajectories and therap

    A multi-layer functional genomic analysis to understand noncoding genetic variation in lipids

    No full text
    A major challenge of genome-wide association studies (GWASs) is to translate phenotypic associations into biological insights. Here, we integrate a large GWAS on blood lipids involving 1.6 million individuals from five ancestries with a wide array of functional genomic datasets to discover regulatory mechanisms underlying lipid associations. We first prioritize lipid-associated genes with expression quantitative trait locus (eQTL) colocalizations and then add chromatin interaction data to narrow the search for functional genes. Polygenic enrichment analysis across 697 annotations from a host of tissues and cell types confirms the central role of the liver in lipid levels and highlights the selective enrichment of adipose-specific chromatin marks in high-density lipoprotein cholesterol and triglycerides. Overlapping transcription factor (TF) binding sites with lipid-associated loci identifies TFs relevant in lipid biology. In addition, we present an integrative framework to prioritize causal variants at GWAS loci, producing a comprehensive list of candidate causal genes and variants with multiple layers of functional evidence. We highlight two of the prioritized genes, CREBRF and RRBP1, which show convergent evidence across functional datasets supporting their roles in lipid biology.Diabetes mellitus: pathophysiological changes and therap

    The power of genetic diversity in genome-wide association studies of lipids

    No full text
    Increased blood lipid levels are heritable risk factors of cardiovascular disease with varied prevalence worldwide owing to different dietary patterns and medication use(1). Despite advances in prevention and treatment, in particular through reducing low-density lipoprotein cholesterol levels(2), heart disease remains the leading cause of death worldwide(3). Genome-wideassociation studies (GWAS) of blood lipid levels have led to important biological and clinical insights, as well as new drug targets, for cardiovascular disease. However, most previous GWAS(4-23) have been conducted in European ancestry populations and may have missed genetic variants that contribute to lipid-level variation in other ancestry groups. These include differences in allele frequencies, effect sizes and linkage-disequilibrium patterns(24). Here we conduct a multi-ancestry, genome-wide genetic discovery meta-analysis of lipid levels in approximately 1.65 million individuals, including 350,000 of non-European ancestries. We quantify the gain in studying non-European ancestries and provide evidence to support the expansion of recruitment of additional ancestries, even with relatively small sample sizes. We find that increasing diversity rather than studying additional individuals of European ancestry results in substantial improvements in fine-mapping functional variants and portability of polygenic prediction (evaluated in approximately 295,000 individuals from 7 ancestry groupings). Modest gains in the number of discovered loci and ancestry-specific variants were also achieved. As GWAS expand emphasis beyond the identification of genes and fundamental biology towards the use of genetic variants for preventive and precision medicine(25), we anticipate that increased diversity of participants will lead to more accurate and equitable(26) application of polygenic scores in clinical practice.Prevention, Population and Disease management (PrePoD)Public Health and primary car

    Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis

    Get PDF
    Background: Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery.Results: To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N=1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3-5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism.Conclusions: Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk
    corecore