42 research outputs found

    Search for the Neutron Decay n→\rightarrow X+γ\gamma where X is a dark matter particle

    Get PDF
    In a recent paper submitted to Physical Review Letters, Fornal and Grinstein have suggested that the discrepancy between two different methods of neutron lifetime measurements, the beam and bottle methods can be explained by a previously unobserved dark matter decay mode, n→\rightarrow X+γ\gamma where X is a dark matter particle. We have performed a search for this decay mode over the allowed range of energies of the monoenergetic gamma ray for X to be a dark matter particle. We exclude the possibility of a sufficiently strong branch to explain the lifetime discrepancy with greater than 4 sigma confidence.Comment: 6 pages 3 figure

    Position-sensitive detection of ultracold neutrons with an imaging camera and its implications to spectroscopy

    Full text link
    Position-sensitive detection of ultracold neutrons (UCNs) is demonstrated using an imaging charge-coupled device (CCD) camera. A spatial resolution less than 15 μ\mum has been achieved, which is equivalent to an UCN energy resolution below 2 pico-electron-volts through the relation δE=m0gδx\delta E = m_0g \delta x. Here, the symbols δE\delta E, δx\delta x, m0m_0 and gg are the energy resolution, the spatial resolution, the neutron rest mass and the gravitational acceleration, respectively. A multilayer surface convertor described previously is used to capture UCNs and then emits visible light for CCD imaging. Particle identification and noise rejection are discussed through the use of light intensity profile analysis. This method allows different types of UCN spectroscopy and other applications.Comment: 12 figures, 28 pages, accepted for publication in NIM

    Projection Imaging with Ultracold Neutrons

    Get PDF
    Ultracold neutron (UCN) projection imaging is demonstrated using a boron-coated back-illuminated CCD camera and the Los Alamos UCN source. Each neutron is recorded through the capture reactions with10B. By direct detection at least one of the byproducts α, 7Li and γ (electron recoils) derived from the neutron capture and reduction of thermal noise of the scientific CCD camera, a signal-to-noise improvement on the order of 104 over the indirect detection has been achieved. Sub-pixel position resolution of a few microns is confirmed for individual UCN events. Projection imaging of test objects shows a spatial resolution less than 100μm by an integrated UCN flux one the order of 106 cm−2. The bCCD can be used to build UCN detectors with an area on the order of 1 m2. The combination of micrometer scale spatial resolution, low readout noise of a few electrons, and large area makes bCCD suitable for quantum science of UCN

    A boron-coated CCD camera for direct detection of Ultracold Neutrons (UCN)

    Full text link
    A new boron-coated CCD camera is described for direct detection of ultracold neutrons (UCN) through the capture reactions 10^{10}B (n,α\alpha0γ\gamma)7^7Li (6%) and 10^{10}B(n,α\alpha1γ\gamma)7^7Li (94%). The experiments, which extend earlier works using a boron-coated ZnS:Ag scintillator, are based on direct detections of the neutron-capture byproducts in silicon. The high position resolution, energy resolution and particle ID performance of a scientific CCD allows for observation and identification of all the byproducts α\alpha, 7^7Li and γ\gamma (electron recoils). A signal-to-noise improvement on the order of 104^4 over the indirect method has been achieved. Sub-pixel position resolution of a few microns is demonstrated. The technology can also be used to build UCN detectors with an area on the order of 1 m2^2. The combination of micrometer scale spatial resolution, few electrons ionization thresholds and large area paves the way to new research avenues including quantum physics of UCN and high-resolution neutron imaging and spectroscopy.Comment: 10 pages, 8 figure

    Measurement of the neutron lifetime using an asymmetric magneto- gravitational trap and in situ detection

    Full text link
    The precise value of the mean neutron lifetime, τn\tau_n, plays an important role in nuclear and particle physics and cosmology. It is a key input for predicting the ratio of protons to helium atoms in the primordial universe and is used to search for new physics beyond the Standard Model of particle physics. There is a 3.9 standard deviation discrepancy between τn\tau_n measured by counting the decay rate of free neutrons in a beam (887.7 ±\pm 2.2 s) and by counting surviving ultracold neutrons stored for different storage times in a material trap (878.5±\pm0.8 s). The experiment described here eliminates loss mechanisms present in previous trap experiments by levitating polarized ultracold neutrons above the surface of an asymmetric storage trap using a repulsive magnetic field gradient so that the stored neutrons do not interact with material trap walls and neutrons in quasi-stable orbits rapidly exit the trap. As a result of this approach and the use of a new in situ neutron detector, the lifetime reported here (877.7 ±\pm 0.7 (stat) +0.4/-0.2 (sys) s) is the first modern measurement of τn\tau_n that does not require corrections larger than the quoted uncertainties.Comment: 9 pages, 3 figures, 2 table

    Status of the UCNÏ„ experiment

    Get PDF
    The neutron is the simplest nuclear system that can be used to probe the structure of the weak interaction and search for physics beyond the standard model. Measurements of neutron lifetime and β-decay correlation coefficients with precisions of 0.02% and 0.1%, respectively, would allow for stringent constraints on new physics. The UCNτ experiment uses an asymmetric magneto-gravitational UCN trap with in situ counting of surviving neutrons to measure the neutron lifetime, τ_n = 877.7s (0.7s)_(stat) (+0.4/−0.2s)_(sys). We discuss the recent result from UCNτ, the status of ongoing data collection and analysis, and the path toward a 0.25 s measurement of the neutron lifetime with UCNτ
    corecore