28 research outputs found

    BRCA1 5083del19 Mutant Allele Selectively Up-Regulates Periostin Expression In vitro and In vivo

    No full text
    Purpose: The aim of this study was to explore the gene expression pattern produced by the cancer-associated BRCA1 5083del19 founder mutation by using a microarray analysis. Such a mutation, identified in a subset of familial breast cancer patients, involves a deletion at the 3' end of the BRCA1 messenger leading, in the mature protein, to the ablation of the BRCT tandem domain. Experimental Design: We generated HeLa cells stably expressing both exogenous wild-type (HeLa/(wt)BRCA1), used as a control, and 5083del19 BRCA1 (HeLa/(5083del19)BRCA1) alleles; gene chips were then used to investigate any changes in the transcription profile induced by the 5083del19 BRCA1 mutant compared with controls. Results: Among the genes showing perturbation of their expression, periostin was found to be up-regulated in HeLa/(5083de19)BRCA1 cells to an extent of 72-fold versus HeLa/(pcDNA3.1/empty) and 76-fold versus HeLa/(wt)BRCA1 cells. This finding was validated both in vitro in breast cancer cell lines harboring mutations of BRCA1 and in vivo by immunohistochemistry of breast cancer specimens bearing the 5083del19 BRCA1 mutation as well as by Western blot analysis of sera obtained from patients and healthy carriers of the same mutation. Conclusions: Our results suggest that periostin overexpression, whose product is released from cells in the extracellular fluids, might be a potential marker for early cancer detection in a specific subset of hereditary breast carcinomas triggered by cancer-associated BRCA1 mutations that affect the BRCT tandem domain

    The PYRIN domain-only protein POP3 inhibits ALR inflammasomes and regulates responses to infection with DNA viruses.

    No full text
    The innate immune system responds to infection and tissue damage by activating cytosolic sensory complexes called 'inflammasomes'. Cytosolic DNA is sensed by AIM2-like receptors (ALRs) during bacterial and viral infections and in autoimmune diseases. Subsequently, recruitment of the inflammasome adaptor ASC links ALRs to the activation of caspase-1. A controlled immune response is crucial for maintaining homeostasis, but the regulation of ALR inflammasomes is poorly understood. Here we identified the PYRIN domain (PYD)-only protein POP3, which competes with ASC for recruitment to ALRs, as an inhibitor of DNA virus-induced activation of ALR inflammasomes in vivo. Data obtained with a mouse model with macrophage-specific POP3 expression emphasize the importance of the regulation of ALR inflammasomes in monocytes and macrophages

    The PYRIN domain-only protein POP3 inhibits ALR inflammasomes and regulates responses to infection with DNA viruses.

    No full text
    The innate immune system responds to infection and tissue damage by activating cytosolic sensory complexes called 'inflammasomes'. Cytosolic DNA is sensed by AIM2-like receptors (ALRs) during bacterial and viral infections and in autoimmune diseases. Subsequently, recruitment of the inflammasome adaptor ASC links ALRs to the activation of caspase-1. A controlled immune response is crucial for maintaining homeostasis, but the regulation of ALR inflammasomes is poorly understood. Here we identified the PYRIN domain (PYD)-only protein POP3, which competes with ASC for recruitment to ALRs, as an inhibitor of DNA virus-induced activation of ALR inflammasomes in vivo. Data obtained with a mouse model with macrophage-specific POP3 expression emphasize the importance of the regulation of ALR inflammasomes in monocytes and macrophages

    The PYRIN domain-only protein POP3 inhibits ALR inflammasomes and regulates responses to infection with DNA viruses.

    No full text
    The innate immune system responds to infection and tissue damage by activating cytosolic sensory complexes called 'inflammasomes'. Cytosolic DNA is sensed by AIM2-like receptors (ALRs) during bacterial and viral infections and in autoimmune diseases. Subsequently, recruitment of the inflammasome adaptor ASC links ALRs to the activation of caspase-1. A controlled immune response is crucial for maintaining homeostasis, but the regulation of ALR inflammasomes is poorly understood. Here we identified the PYRIN domain (PYD)-only protein POP3, which competes with ASC for recruitment to ALRs, as an inhibitor of DNA virus-induced activation of ALR inflammasomes in vivo. Data obtained with a mouse model with macrophage-specific POP3 expression emphasize the importance of the regulation of ALR inflammasomes in monocytes and macrophages

    Bim suppresses the development of SLE by limiting myeloid inflammatory responses

    Get PDF
    The Bcl-2 family is considered the guardian of the mitochondrial apoptotic pathway. We demonstrate that Bim acts as a molecular rheostat by controlling macrophage function not only in lymphoid organs but also in end organs, thereby preventing the break in tolerance. Mice lacking Bim in myeloid cells (LysMCreBimfl/fl) develop a systemic lupus erythematosus (SLE)-like disease that mirrors aged Bim-/- mice, including loss of marginal zone macrophages, splenomegaly, lymphadenopathy, autoantibodies (including anti-DNA IgG), and a type I interferon signature. LysMCreBimfl/fl mice exhibit increased mortality attributed to glomerulonephritis (GN). Moreover, the toll-like receptor signaling adaptor protein TRIF (TIR-domain-containing adapter-inducing interferon-β) is essential for GN, but not systemic autoimmunity in LysMCreBimfl/fl mice. Bim-deleted kidney macrophages exhibit a novel transcriptional lupus signature that is conserved within the gene expression profiles from whole kidney biopsies of patients with SLE. Collectively, these data suggest that the Bim may be a novel therapeutic target in the treatment of SLE
    corecore