433 research outputs found

    Radiation Risk Projections for Space Travel

    Get PDF
    Space travelers are exposed to solar and galactic cosmic rays comprised of protons and heavy ions moving with velocities close to the speed of light. Cosmic ray heavy ions are known to produce more severe types of biomolecular damage in comparison to terrestrial forms of radiation, however the relationship between such damage and disease has not been fully elucidated. On Earth, we are protected from cosmic rays by atmospheric and magnetic shielding, and only the remnants of cosmic rays in the form of ground level muons and other secondary radiations are present. Because human epidemiology data is lacking for cosmic rays, risk projection must rely on theoretical understanding and data from experimental models exposed to space radiation using charged particle accelerators to simulate space radiation. Although the risks of cancer and other late effects from cosmic rays are currently believed to present a severe challenge to space travel, this challenge is centered on our lack of confidence in risk projections methodologies. We review biophysics and radiobiology data on the effects of the cosmic ray heavy ions, and the current methods used to project radiation risks . Cancer risk projections are described as a product of many biological and physical factors, each of which has a differential range of uncertainty due to lack of data and knowledge. Risk projections for space travel are described using Monte-Carlo sampling from subjective error di stributions that represent the lack of knowledge in each factor that contributes to the projection model in order to quantify the overall uncertainty in risk projections. This analysis is applied to space mi ssion scenarios including lunar colony, deep space outpost, and a Mars mission. Results suggest that the number of days in space where cancer mortality risks can be assured at a 95% confidence level to be below the maximum acceptable risk for radi ation workers on Earth or the International Space Station is only on the order of 100-200 days. Approaches to reduce these unceI1ainties and mitigate risks are described

    Cellular repair/misrepair track model

    Get PDF
    A repair/misrepair cell kinetics model is superimposed onto the track structure model of Katz to provide for a repair mechanism. The model is tested on the repair-dependent data of Yang et al. and provides an adequate description of that data. The misrepair rate determines the maximum relative biological effectiveness (RBE), but similar results could arise from indirect X-ray lethality not include in the present model

    Modeling Reveals the Dependence of Hippocampal Neurogenesis Radiosensitivity on Age and Strain of Rats

    Get PDF
    Cognitive dysfunction following radiation treatment for brain cancers in both children and adults have been correlated to impairment of neurogenesis in the hippocampal dentate gyrus. Various species and strains of rodent models have been used to study radiation-induced changes in neurogenesis and these investigations have utilized only a limited number of doses, dose-fractions, age and time after exposures conditions. In this paper, we have extended our previous mathematical model of radiation-induced hippocampal neurogenesis impairment of C57BL/6 mice to delineate the time, age, and dose dependent alterations in neurogenesis of a diverse strain of rats. To the best of our knowledge, this is the first predictive mathematical model to be published about hippocampal neurogenesis impairment for a variety of rat strains after acute or fractionated exposures to low linear energy transfer (low LET) radiation, such as X-rays and γ-rays, which are conventionally used in cancer radiation therapy. We considered four compartments to model hippocampal neurogenesis and its impairment following radiation exposures. Compartments include: (1) neural stem cells (NSCs), (2) neuronal progenitor cells or neuroblasts (NB), (3) immature neurons (ImN), and (4) glioblasts (GB). Additional consideration of dose and time after irradiation dependence of microglial activation and a possible shift of NSC proliferation from neurogenesis to gliogenesis at higher doses is established. Using a system of non-linear ordinary differential equations (ODEs), characterization of rat strain and age-related dynamics of hippocampal neurogenesis for unirradiated and irradiated conditions is developed. The model is augmented with the description of feedback regulation on early and late neuronal proliferation following radiation exposure. Predictions for dose-fraction regimes compared to acute radiation exposures, along with the dependence of neurogenesis sensitivity to radiation on age and strain of rats are discussed. A major result of this work is predictions of the rat strain and age dependent differences in radiation sensitivity and sub-lethal damage repair that can be used for predictions for arbitrary dose and dose-fractionation schedules

    Uncertainty Analysis in Space Radiation Protection

    Get PDF
    Space radiation is comprised of high energy and charge (HZE) nuclei, protons, and secondary radiation including neutrons. The uncertainties in estimating the health risks from galactic cosmic rays (GCR) are a major limitation to the length of space missions, the evaluation of potential risk mitigation approaches, and application of the As Low As Reasonably Achievable (ALARA) principle. For long duration space missio ns, risks may approach radiation exposure limits, therefore the uncertainties in risk projections become a major safety concern and methodologies used for ground-based works are not deemed to be sufficient. NASA limits astronaut exposures to a 3% risk of exposure induced death (REID) and protects against uncertainties in risks projections using an assessment of 95% confidence intervals in the projection model. We discuss NASA s approach to space radiation uncertainty assessments and applications for the International Space Station (ISS) program and design studies of future missions to Mars and other destinations. Several features of NASA s approach will be discussed. Radiation quality descriptions are based on the properties of radiation tracks rather than LET with probability distribution functions (PDF) for uncertainties derived from radiobiology experiments at particle accelerators. The application of age and gender specific models for individual astronauts is described. Because more than 90% of astronauts are never-smokers, an alternative risk calculation for never-smokers is used and will be compared to estimates for an average U.S. population. Because of the high energies of the GCR limits the benefits of shielding and the limited role expected for pharmaceutical countermeasures, uncertainty reduction continues to be the optimal approach to improve radiation safety for space missions

    DNA Damage Signals and Space Radiation Risk

    Get PDF
    Space radiation is comprised of high-energy and charge (HZE) nuclei and protons. The initial DNA damage from HZE nuclei is qualitatively different from X-rays or gamma rays due to the clustering of damage sites which increases their complexity. Clustering of DNA damage occurs on several scales. First there is clustering of single strand breaks (SSB), double strand breaks (DSB), and base damage within a few to several hundred base pairs (bp). A second form of damage clustering occurs on the scale of a few kbp where several DSB?s may be induced by single HZE nuclei. These forms of damage clusters do not occur at low to moderate doses of X-rays or gamma rays thus presenting new challenges to DNA repair systems. We review current knowledge of differences that occur in DNA repair pathways for different types of radiation and possible relationships to mutations, chromosomal aberrations and cancer risks

    Theory of Alpha-Nucleus Collisions at High Energies

    Get PDF
    The interaction of high energy alpha particles with atomic nuclei is considered using multiple scattering theories. Semi-classical solutions to coupled-channel equations derived from Watson\u27s form of the nucleus-nucleus multiple scattering series are shown to be equivalent to the Glauber multiple scattering series. Second-order solutions for the elastic amplitude are developed and used to study the effects of short-range correlations in nuclear scattering. The Jastrow method is used to model the two-particle density for 4He and to construct one and two particle form factors. Excellent agreement with experimental data for angular distributions, and total and reaction cross sections is found. The inclusive momentum distribution for projectile fragmentation is developed in terms of Lorentz invariant three-particle phase space. The participant-spectator description of the fragmentation of alpha particles is formulated using direct reaction theory. Overlap functions for the virtual dissociation of alpha particles are considered

    Nitric Oxide Is Involved in Heavy Ion-Induced Non-Targeted Effects in Human Fibroblasts

    Get PDF
    Previously, we investigated the dose response for chromosomal aberration (CA) for exposures corresponding to less than one particle traversal per cell nucleus by high energy and charge (HZE) particles, and showed that the dose responses for simple exchanges for human fibroblast irradiated under confluent culture conditions were best fit by non-linear models motivated by a non-targeted effect (NTE). Our results suggested that the simple exchanges in normal human fibroblasts have an important NTE contribution at low particle fluence. Nitric oxide (NO) has been reported as a candidate for intercellular signaling for NTE in many studies. In order to estimate the contribution of NTE components in induced CA, we measured CA with and without an NO scavenger in normal skin fibroblasts cells after exposure to 600 MeV/u and 1 GeV/u 56Fe ions, less than one direct particle traversal per cell nucleus. Yields of CA were significantly lower in fibroblasts exposed to the NO scavenger compared to controls, suggesting involvement of NO in cell signaling for induction of CA. Media transferred from irradiated cells induced CA in non-irradiated cells, and this effect was abrogated with NO scavengers. Our results strongly support the importance of NTE contributions in the formation of CA at low-particle fluence in fibroblasts. View Full-Tex

    Special Issue: 4th International Workshop on Space Radiation (IWSRR)

    Get PDF
    This special issue of the journal "Radiation and Environmental Biophysics" contains 20 peer-reviewed papers contributed by leading space radiation researcher's world-wide attending the 4th IWSRR. Manuscripts cover a broad range of topics ranging from radiation environments and transport in shielding and planetary surfaces to new results in understanding the biological effects of protons and high-charge and energy (HZE) nuclei on the risk of cancer, and degenerative diseases such as central nervous system effects, heart disease, and cataracts. The issue provides a snapshot of the state-of-the-art of the research in this field, demonstrating both the important results gathered in the past few years with experiments at accelerators, and the need for more research to quantify the risk and develop countermeasures

    Multiple-scattering model for inclusive proton production in heavy ion collisions

    Get PDF
    A formalism is developed for evaluating the momentum distribution for proton production in nuclear abrasion during heavy ion collisions using the Glauber multiple-scattering series. Several models for the one-body density matrix of nuclei are considered for performing numerical calculations. Calculations for the momentum distribution of protons in abrasion are compared with experimental data for inclusive proton production

    Monte-Carlo Simulation of Heavy Ion Track Structure Calculation of Local Dose and 3D Time Evolution of Radiolytic Species

    Get PDF
    Heavy ions have gained considerable importance in radiotherapy due to their advantageous dose distribution profile and high Relative Biological Effectiveness (RBE). Heavy ions are difficult to produce on Earth, but they are present in space and it is impossible at this moment to completely shield astronauts from them. The risk of these radiations is poorly understood, which is a concern for a 3-years Mars mission. The effects of radiation are mainly due to DNA damage such as DNA double-strand breaks (DSBs), although non-targeted effects are also very important. DNA can be damaged by the direct interaction of radiation and by reactions with chemical species produced by the radiolysis of water. The energy deposition is of crucial importance to understand biological effects of radiation. Therefore, much effort has been done recently to improve models of radiation tracks
    corecore