134 research outputs found

    The 1762 October 6 earthquake in the Middle Aterno Valley (L'Aquila, Central Italy): new constraints and new insights

    Get PDF
    The effort for reducing the uncertainties in the location and size of historical earthquakes, even moderate-size ones, is not a peripheral issue, as it plays a major role in the distribution of earthquake recurrence times that can affect the maps of seismic hazard of a territory. The L‟Aquila area (Abruzzo, Central Italy) struck by the April 6, 2009 Mw 6.3 seismic event is a typical example of an earthquake-prone region the location of whose historical seismicity needs to be better located. Thanks to a large body of geological, seismological and geodetic evidence the deep source of the 2009 mainshock has been imaged as a ~15 km-long, NW-trending, SWdipping, almost pure normal fault coinciding with the Paganica Fault accepted_Manuscript Click here to download Manuscript: accepted_source_file.doc 2 System at the surface (Fig. 1). Conversely, very few papers have addressed so far the issue of reconstructing the seismic history of the Paganica Fault, charting the relationships between this fault and the adjacent ones, and finding out the causative source for each of the earthquakes listed in the Italian earthquake Catalog (CPTI Working Group, 2004; Rovida et al., 2011)

    Study of semi-synthetic plastic objects of historic interest using non-invasive total reflectance FT-IR

    Get PDF
    A significant proportion of modern and contemporary artifacts and objects of historical interest, are composed of materials in the form of synthetic, semi-synthetic, and natural polymers. Each class of polymer and corresponding composite plastics are subject to different degradation processes. This means that conservators and curators of 20th century collections are faced with varied, nontrivial preservation issues. An unresolved problem is the identification of early plastics based on semi-synthetic polymers such as cellulose nitrate, cellulose acetate, and casein formaldehyde, which were often used to imitate the more valuable natural materials such as ivory, tortoiseshell, ebony, and bone. This exemplifies the need for non-invasive methods specifically tailored for identification of plastic materials in collections, so as to provide conservators with a means of materials classification to support preventive conservation strategies and interventive treatments. The present work is aimed at evaluating the effectiveness of non-invasive Total Reflectance (TR) FT-IR spectroscopy, coupled with a custom reference spectral TR FT-IR library, for the identification of materials comprising a series of unknown objects. A set of ten heritage objects made from early semi-synthetic materials was used as a training test set to validate the proposed methodological approach. The FT-IR data acquired on the test objects were pre-processed and finally classified using commercial software tools used for the automatic classification of spectra in FT-IR spectroscopy. The procedure was successfully applied to several cases, although residual uncertainties remained in a few examples. The results obtained are critically analyzed and discussed in the perspective of proposing a robust method for in-field prescreening of the chemical composition of plastic artistic and historical objects

    Anti-angiogenic and anti-proliferative graphene oxide nanosheets for tumor cell therapy

    Get PDF
    Graphene oxide (GO) is a bidimensional novel material that exhibits high biocompatibility and angiogenic properties, mostly related to the intracellular formation of reactive oxygen species (ROS). In this work, we set up an experimental methodology for the fabrication of GO@peptide hybrids by the immobilization, via irreversible physical adsorption, of the Ac-(GHHPH)4-NH2 peptide sequence, known to mimic the anti-angiogenic domain of the histidine-proline-rich glycoprotein (HPRG). The anti-proliferative capability of the graphene-peptide hybrids were tested in vitro by viability assays on prostate cancer cells (PC-3 line), human neuroblastoma (SH-SY5Y), and human retinal endothelial cells (primary HREC). The anti-angiogenic response of the two cellular models of angiogenesis, namely endothelial and prostate cancer cells, was scrutinized by prostaglandin E2 (PGE2) release and wound scratch assays, to correlate the activation of inflammatory response upon the cell treatments with the GO@peptide nanocomposites to the cell migration processes. Results showed that the GO@peptide nanoassemblies not only effectively induced toxicity in the prostate cancer cells, but also strongly blocked the cell migration and inhibited the prostaglandin-mediated inflammatory process both in PC-3 and in HRECs. Moreover, the cytotoxic mechanism and the internalization efficiency of the theranostic nanoplatforms, investigated by mitochondrial ROS production analyses and confocal microscopy imaging, unraveled a dose-dependent manifold mechanism of action performed by the hybrid nanoassemblies against the PC-3 cells, with the detection of the GO-characteristic cell wrapping and mitochondrial perturbation. The obtained results pointed out to the very promising potential of the synthetized graphene-based hybrids for cancer therapy

    Graphene Oxide Nanosheets Tailored With Aromatic Dipeptide Nanoassemblies for a Tuneable Interaction With Cell Membranes

    Get PDF
    Engineered graphene-based derivatives are attractive and promising candidates for nanomedicine applications because of their versatility as 2D nanomaterials. However, the safe application of these materials needs to solve the still unanswered issue of graphene nanotoxicity. In this work, we investigated the self-assembly of dityrosine peptides driven by graphene oxide (GO) and/or copper ions in the comparison with the more hydrophobic diphenylalanine dipeptide. To scrutinize the peptide aggregation process, in the absence or presence of GO and/or Cu2+, we used atomic force microscopy, circular dichroism, UV–visible, fluorescence and electron paramagnetic resonance spectroscopies. The perturbative effect by the hybrid nanomaterials made of peptide-decorated GO nanosheets on model cell membranes of supported lipid bilayers was investigated. In particular, quartz crystal microbalance with dissipation monitoring and fluorescence recovery after photobleaching techniques were used to track the changes in the viscoelastic properties and fluidity of the cell membrane, respectively. Also, cellular experiments with two model tumour cell lines at a short time of incubation, evidenced the high potential of this approach to set up versatile nanoplatforms for nanomedicine and theranostic applications

    Directed self-assembly of a xenogeneic vascularized endocrine pancreas for type 1 diabetes.

    Get PDF
    Intrahepatic islet transplantation is the standard cell therapy for β cell replacement. However, the shortage of organ donors and an unsatisfactory engraftment limit its application to a selected patients with type 1 diabetes. There is an urgent need to identify alternative strategies based on an unlimited source of insulin producing cells and innovative scaffolds to foster cell interaction and integration to orchestrate physiological endocrine function. We previously proposed the use of decellularized lung as a scaffold for β cell replacement with the final goal of engineering a vascularized endocrine organ. Here, we prototyped this technology with the integration of neonatal porcine islet and healthy subject-derived blood outgrowth endothelial cells to engineer a xenogeneic vascularized endocrine pancreas. We validated ex vivo cell integration and function, its engraftment and performance in a preclinical model of diabetes. Results showed that this technology not only is able to foster neonatal pig islet maturation in vitro, but also to perform in vivo immediately upon transplantation and for over 18 weeks, compared to normal performance within 8 weeks in various state of the art preclinical models. Given the recent progress in donor pig genetic engineering, this technology may enable the assembly of immune-protected functional endocrine organs

    Finite Fault Analysis and Near Field Dynamic Strains and Rotations due to the 11/05/2011 (Mw5.2) Lorca Earthquake, South-Eastern Spain

    Full text link
    The 11/5/2011 Lorca, Spain earthquake (Mw5.2) and related seismicity produced extensive damage in the town of Lorca and vicinity. During these earthquakes, evidence of rotations and permanent deformations in structures were observed. To analyze these aspects and study the source properties from the near field, the displacement time histories were obtained including the static component at Lorca station. Displacement time histories were computed by an appropriate double time integration procedure of accelerograms. Using these data, the foreshock and mainshock slip distributions were calculated by means of a complete waveform kinematic inversion. To study the dynamic deformations, the 3D tensor of displacement gradients at Lorca station was first estimated by a single station method. Using the finite fault inversion results and by means of a first order finite difference approach, the dynamic deformations tensor at surface was calculated at the recording site. In order to estimate the distribution of the peak dynamic deformations, the calculation was extended to the close neighboring area of the town. The possible influence of the near-field deformations on the surface structures was analyzed.Comment: 29 pages, 8 figure

    Rilievi geologici nell’area epicentrale della sequenza sismica dell’Aquilano del 6 aprile 2009

    Get PDF
    Il 6 Aprile 2009 un terremoto di Ml=5.8 (Mw=6.2) ha colpito L’Aquila e la media valle dell’Aterno in Abruzzo. In questo lavoro presentiamo in maniera sintetica i rilievi geologici effettuati in campagna dal gruppo di lavoro EmerGeo a seguito della sequenza sismica aquilana. Le attività di rilevamento condotte sono consistite principalmente nella verifica, definizione e caratterizzazione delle deformazioni cosismiche superficiali osservate lungo le strutture tettoniche note in letteratura; sono stati inoltre rilevati e riportati altri effetti cosismici locali (fratture su asfalto, frane e scivolamenti) non direttamente collegati alla presenza di strutture tettoniche. In totale sono stati rilevati oltre 300 punti di osservazione su una porzione di territorio estesa circa 900 km2. L’analisi preliminare dei rilievi effettuati indica che le rotture osservate lungo la faglia di Paganica, per la continuità e le caratteristiche, rappresentano l’espressione superficiale della faglia responsabile dell’evento del 6 aprile 2009, e che le rotture lungo le faglie di Bazzano e di Monticchio-Fossa possono rappresentare l’espressione in superficie di una struttura antitetica riattivata durante l’evento
    • …
    corecore