302 research outputs found

    Effect of picosecond strain pulses on thin layers of the ferromagnetic semiconductor (Ga,Mn)(As,P)

    Full text link
    The effect of picosecond acoustic strain pulses (ps-ASP) on a thin layer of (Ga,Mn)As co-doped with phosphorus was probed using magneto-optical Kerr effect (MOKE). A transient MOKE signal followed by low amplitude oscillations was evidenced, with a strong dependence on applied magnetic field, temperature and ps-ASP amplitude. Careful interferometric measurement of the layer's thickness variation induced by the ps-ASP allowed us to model very accurately the resulting signal, and interpret it as the strain modulated reflectivity (differing for σ±\sigma_{\pm} probe polarizations), independently from dynamic magnetization effects.Comment: 6 pages, 5 figure

    Negative refraction of a three-dimensional metallic photonic crystal

    Get PDF
    A metamaterial with a negative effective index of refraction is made from a three-dimensional hexagonal lattice photonic crystal with a metallic basis embedded in foam. It has been simulated with Ansoft HFSSTM in a frequency range from 7.0 to 12.0 GHz. Simulated results tested experimentally and negative refraction verified in some frequencies. Experimental results are in excellent agreement with simulations

    Crossover from spin accumulation into interface states to spin injection in the germanium conduction band

    Full text link
    Electrical spin injection into semiconductors paves the way for exploring new phenomena in the area of spin physics and new generations of spintronic devices. However the exact role of interface states in spin injection mechanism from a magnetic tunnel junction into a semiconductor is still under debate. In this letter, we demonstrate a clear transition from spin accumulation into interface states to spin injection in the conduction band of nn-Ge. We observe spin signal amplification at low temperature due to spin accumulation into interface states followed by a clear transition towards spin injection in the conduction band from 200 K up to room temperature. In this regime, the spin signal is reduced down to a value compatible with spin diffusion model. More interestingly, we demonstrate in this regime a significant modulation of the spin signal by spin pumping generated by ferromagnetic resonance and also by applying a back-gate voltage which are clear manifestations of spin current and accumulation in the germanium conduction band.Comment: 5 pages, 4 figure

    Green's function for metamaterial superlens: Evanescent wave in the image

    Full text link
    We develop a new method to calculate the evanescent wave, the subdivided evanescent waves (SEWs), and the radiative wave, which can be obtained by separating the global field of the image of metamaterial superlens. The method is based on Green's function, and it can be applied in other linear systems. This study could help us to investigate the effect of evanescent wave on metamaterial superlens directly, and give us a new way to design new devices.Comment: 15 pages, 3 figure
    corecore