634 research outputs found
On the dimension of subspaces with bounded Schmidt rank
We consider the question of how large a subspace of a given bipartite quantum
system can be when the subspace contains only highly entangled states. This is
motivated in part by results of Hayden et al., which show that in large d x
d--dimensional systems there exist random subspaces of dimension almost d^2,
all of whose states have entropy of entanglement at least log d - O(1). It is
also related to results due to Parthasarathy on the dimension of completely
entangled subspaces, which have connections with the construction of
unextendible product bases. Here we take as entanglement measure the Schmidt
rank, and determine, for every pair of local dimensions dA and dB, and every r,
the largest dimension of a subspace consisting only of entangled states of
Schmidt rank r or larger. This exact answer is a significant improvement on the
best bounds that can be obtained using random subspace techniques. We also
determine the converse: the largest dimension of a subspace with an upper bound
on the Schmidt rank. Finally, we discuss the question of subspaces containing
only states with Schmidt equal to r.Comment: 4 pages, REVTeX4 forma
Square vortex lattice at anomalously low magnetic fields in electron-doped NdCeCuO
We report here on the first direct observations of the vortex lattice in the
bulk of electron-doped NdCeCuO single crystals. Using
small angle neutron scattering, we have observed a square vortex lattice with
the nearest-neighbors oriented at 45 from the Cu-O bond direction,
which is consistent with theories based on the d-wave superconducting gap.
However, the square symmetry persists down to unusually low magnetic fields.
Moreover, the diffracted intensity from the vortex lattice is found to decrease
rapidly with increasing magnetic field.Comment: 4 pages, 4 Figures, accepted for publication in Phys. Rev. Let
Measurement of molecular mixing at a conjugated polymer interface by specular and off-specular neutron scattering
Measurements have been performed on thermally equilibrated conjugated-polymer/insulating-polymer bilayers, using specular and off-specular neutron reflectivity. While specular reflectivity is only sensitive to the structure normal to the sample, off-specular measurements can probe the structure of the buried polymer/polymer interface in the plane of the sample. Systematic analysis of the scattering from a set of samples with varying insulating-polymer-thickness, using the distorted-wave Born approximation (DWBA), has allowed a robust determination of the intrinsic width at the buried polymer/polymer interface. The quantification of this width (12 Å ± 4 Å) allows us to examine aspects of the conjugated polymer conformation at the interface, by appealing to self-consistent field theory (SCFT) predictions for equilibrium polymer/polymer interfaces in the cases of flexible and semi-flexible chains. This analysis enables us to infer that mixing at this particular interface cannot be described in terms of polymer chain segments that adopt conformations similar to a random walk. Instead, a more plausible explanation is that the conjugated polymer chain segments become significantly oriented in the plane of the interface. It is important to point out that we are only able to reach this conclusion following the extensive analysis of reflectivity data, followed by comparison with SCFT predictions. It is not simply the case that conjugated polymers would be expected to adopt this kind of oriented conformation at the interface, because of their relatively high chain stiffness. It is the combination of a high stiffness and a relatively narrow intrinsic interfacial width that results in a deviation from flexible chain behaviour
Counterexamples to additivity of minimum output p-Renyi entropy for p close to 0
Complementing recent progress on the additivity conjecture of quantum
information theory, showing that the minimum output p-Renyi entropies of
channels are not generally additive for p>1, we demonstrate here by a careful
random selection argument that also at p=0, and consequently for sufficiently
small p, there exist counterexamples.
An explicit construction of two channels from 4 to 3 dimensions is given,
which have non-multiplicative minimum output rank; for this pair of channels,
numerics strongly suggest that the p-Renyi entropy is non-additive for all p <
0.11. We conjecture however that violations of additivity exist for all p<1.Comment: 7 pages, revtex4; v2 added correct ref. [15]; v3 has more information
on the numerical violation as well as 1 figure (2 graphs) - note that the
explicit example was changed and the more conservative estimate of the bound
up to which violations occur, additionally some other small issues are
straightened ou
Supercooling of the disordered vortex lattice in Bi_2Sr_2CaCu_2O_8+d
Time-resolved local induction measurements near to the vortex lattice
order-disorder transition in optimally doped
BiSrCaCuO single crystals shows that the
high-field, disordered phase can be quenched to fields as low as half the
transition field. Over an important range of fields, the electrodynamical
behavior of the vortex system is governed by the co-existence of the two phases
in the sample. We interpret the results in terms of supercooling of the
high-field phase and the possible first order nature of the order-disorder
transition at the ``second peak''.Comment: 4 pages, 3 figures. Submitted to Nature, July 10th, 1999; Rejected
August 8th for lack of broad interest Submitted to Physical Review Letters
September 10th, 199
Structure of Flux Line Lattices with Weak Disorder at Large Length Scales
Dislocation-free decoration images containing up to 80,000 vortices have been
obtained on high quality BiSrCaCuO superconducting
single crystals. The observed flux line lattices are in the random manifold
regime with a roughening exponent of 0.44 for length scales up to 80-100
lattice constants. At larger length scales, the data exhibit nonequilibrium
features that persist for different cooling rates and field histories.Comment: 4 pages, 3 gif images, to appear in PRB rapid communicatio
Mixed-state quasiparticle transport in high-T_c cuprates: localization by magnetic field
Theory of quasiparticle transport in the mixed state of a d-wave
superconductor is developed under the assumption of disordered vortex array. A
novel universal regime is identified at fields above H*= c*H_{c2}(T/T_c)^2,
characterized by a field-independent longitudinal thermal conductivity. It is
argued that this behavior is responsible for the high-field plateau in the
thermal conductivity experimentally observed in cuprates by Krishana, Ong and
co-workers.Comment: 4 pages REVTeX + 1 PostScript figure. Final version to appear in PRL.
Several changes in response to referee comments. For related work and info
visit http://www.pha.jhu.edu/~fran
- …