11 research outputs found

    Ion acceleration with few cycle relativistic laser pulses from foil targets

    Full text link
    Ion acceleration resulting from the interaction of 11 fs laser pulses of ~35 mJ energy with ultrahigh contrast (<10^-10), and 10^19 W/cm^2 peak intensity with foil targets made of various materials and thicknesses at normal (0-degree) and 45-degree laser incidence is investigated. The maximum energy of the protons accelerated from both the rear and front sides of the target was above 1 MeV. A conversion efficiency from laser pulse energy to proton beam is estimated to be as high as ~1.4 % at 45-degree laser incidence using a 51 nm-thick Al target. The excellent laser contrast indicates the predominance of vacuum heating via the Brunels effect as an absorption mechanism involving a tiny pre-plasma of natural origin due to the Gaussian temporal laser pulse shape. Experimental results are in reasonable agreement with theoretical estimates where proton acceleration from the target rear into the forward direction is well explained by a TNSA-like mechanism, while proton acceleration from the target front into the backward direction can be explained by the formation of a charged cavity in a tiny pre-plasma. The exploding Coulomb field from the charged cavity also serves as a source for forward-accelerated ions at thick targets.Comment: 12 pages, 7 figures

    Non-exponential resistive switching in Ag2S memristors: a key to nanometer-scale non-volatile memory devices

    No full text
    The dynamics of resistive switchings in nanometer-scale metallic junctions formed between an inert metallic tip and an Ag film covered by a thin Ag2S layer are investigated. Our thorough experimental analysis and numerical simulations revealed that the resistance change upon a switching bias voltage pulse exhibits a strongly non-exponential behaviour yielding markedly different response times at different bias levels. Our results demonstrate the merits of Ag2S nanojunctions as nanometer-scale non-volatile memory cells with stable switching ratios, high endurance as well as fast response to write/erase, and an outstanding stability against read operations at technologically optimal bias and current levels.ISSN:2040-3364ISSN:2040-337

    Resistive switching in metallic Ag2S memristors due to a local overheating induced phase transition

    No full text
    Resistive switchings in nanometer-scale metallic junctions formed between an inert metallic tip and an Ag film covered by a thin Ag2S layer are investigated as a function of temperature at different biasing conditions. The observed switching threshold voltages along with the ON and OFF state resistances are quantitatively understood by taking the local overheating of the junction volume and the resulting structural phase transition of the Ag2S matrix into account. Our results demonstrate that the essential characteristics of the resistive switching in Ag2S based nanojunctions can be routinely optimized by suitable sample preparation and biasing schemes.ISSN:2040-3364ISSN:2040-337

    A fast operation of nanometer-scale metallic memristors: highly transparent conductance channels in Ag2S devices

    No full text
    The nonlinear transport properties of nanometer-scale junctions formed between an inert metallic tip and an Ag film covered by a thin Ag2S layer are investigated. Suitably prepared samples exhibit memristive behavior with technologically optimal ON and OFF state resistances yielding to resistive switching on the nanosecond time scale. Utilizing point contact Andreev reflection spectroscopy, we studied the nature of electron transport in the active volume of memristive junctions showing that both the ON and OFF states correspond to truly nanometer-scale, highly transparent metallic channels. Our results demonstrate the merits of Ag2S nanojunctions as nanometer-scale memory cells which can be switched by nanosecond voltage pulses.ISSN:2040-3364ISSN:2040-337

    Picosecond Time-Scale Resistive Switching Monitored in Real-Time

    No full text
    The resistance state of filamentary memristors can be tuned by relocating only a few atoms at interatomic distances in the active region of a conducting filament. Thereby the technology holds promise not only in its ultimate downscaling potential and energy efficiency but also in unprecedented speed. Yet, the breakthrough in high-frequency applications still requires the clarification of the dominant mechanisms and inherent limitations of ultra-fast resistive switching. Here bipolar, multilevel resistive switchings are investigated in tantalum pentoxide based memristors with picosecond time resolution. Cyclic resistive switching operation due to 20 ps long voltage pulses of alternating polarity are experimentally demonstrated. The analysis of the real-time response of the memristor reveals that the set switching can take place at the picosecond time-scale where it is only compromised by the bandwidth limitations of the experimental setup. In contrast, the completion of the reset transitions significantly exceeds the duration of the ultra-short voltage bias, demonstrating the dominant role of thermal diffusion and underlining the importance of dedicated thermal engineering for future high-frequency memristor circuit applications.ISSN:2199-160

    A non-oxidizing fabrication method for lithographic break junctions of sensitive metals

    No full text
    Electrochemically active metals offer advanced functionalities with respect to the well-established gold electrode arrangements in various electronic transport experiments on atomic scale objects. Such functionalities can arise from stronger interactions with the leads which provide better coupling to specific molecules and may also facilitate metallic filament formation in atomic switches. However, the higher reactivity of the electrode metal also imposes challenges in the fabrication and reliability of nanometer scale platforms, limiting the number of reported applications. Here we present a high-yield lithographic fabrication procedure suitable to extend the experimental toolkit with mechanically controllable break junctions of oxygen sensitive metallic electrodes. We fabricate and characterize silver break junctions exhibiting single-atomic conductance and superior mechanical and electrical stability at room temperature. As a proof-of-principle application, we demonstrate resistive switching between metastable few-atom configurations at finite voltage bias.ISSN:2516-023

    Universal 1/f type current noise of Ag filaments in redox-based memristive nanojunctions

    No full text
    The microscopic origins and technological impact of 1/f type current fluctuations in Ag based, filamentary type resistive switching devices have been investigated upon downscaling toward the ultimate single atomic limit. The analysis of the low-frequency current noise spectra revealed that the main electronic noise contribution arises from the resistance fluctuations due to internal dynamical defects of Ag nanofilaments. The resulting 0.01–1% current noise ratio, i.e. the total noise level with respect to the mean value of the current, is found to be universal: its magnitude only depends on the total resistance of the device, irrespective of the materials aspects of the surrounding solid electrolyte and of the specific filament formation procedure. Moreover, the resistance dependence of the current noise ratio also displays the diffusive to ballistic crossover, confirming that stable resistive switching operation utilizing Ag nanofilaments is not compromised even in truly atomic scale junctions by technologically impeding noise levels.ISSN:2040-3364ISSN:2040-337

    Multiple Physical Time Scales and Dead Time Rule in Few-Nanometers Sized Graphene–SiOx-Graphene Memristors

    No full text
    The resistive switching behavior in SiOx-based phase change memory devices confined by few nanometer wide graphene nanogaps is investigated. Our experiments and analysis reveal that the switching dynamics is not only determined by the commonly observed bias voltage dependent set and reset times. We demonstrate that an internal time scale, the dead time, plays a fundamental role in the system’s response to various driving signals. We associate the switching behavior with the formation of microscopically distinct SiOx amorphous and crystalline phases between the graphene electrodes. The reset transition is attributed to an amorphization process due to a voltage driven self-heating; it can be triggered at any time by appropriate voltage levels. In contrast, the formation of the crystalline ON state is conditional and only occurs after the completion of a thermally assisted structural rearrangement of the as-quenched OFF state which takes place within the dead time after a reset operation. Our results demonstrate the technological relevance of the dead time rule which enables a zero bias access of both the low and high resistance states of a phase change memory device by unipolar voltage pulses

    An ab initio study on resistance switching in hexagonal boron nitride

    No full text
    Two-dimensional materials have been widely investigated to implement memristive devices for data storage or neuromorphic computing applications because of their ultra-scaled thicknesses and clean interfaces. For example, resistance switching in hexagonal boron nitride (h-BN) has been demonstrated. This mechanism is most of the time attributed to the movement of metallic ions. It has however also been reported when h-BN is contacted with two inert electrodes such as graphene or Pt. We suggest here that the switching mechanism of the latter devices, which has not yet been clearly established, relies on locals change of the electronic structure of h-BN as caused by atomic defects, e.g., multi-vacancies. This class of intrinsic h-BN defects can create electrically controllable interlayer bridges. We use a combination of hybrid density functional theory and the Non-equilibrium Green's function formalism to show that a single interlayer bridge resulting from the presence of a trivacancy in a graphene/h-BN/graphene stack leads to a switching voltage of similar to 5 V and a high-to-low resistance ratio >100. Both values lie within the reported experimental range and thus confirm the likelihood that intrinsic defects play a key role in the resistance switching of h-BN in contact with inert electrodes.ISSN:2397-713

    In situ impedance matching in Nb/Nb2O5/PtIr memristive nanojunctions for ultra-fast neuromorphic operation

    No full text
    The dynamical aspects of bipolar resistive switchings have been investigated in Nb/Nb2O5/PtIr nanojunctions. We found that the widely tuneable ON and OFF state resistances are well separated at low bias. On the other hand, the high-bias regime of the resistive switchings coincides with the onset of a high nonlinearity in the current–voltage characteristics, where the impedance of both states rapidly decreases and becomes equivalent around 50 Ω. This phenomenon enables the overriding of the RC limitations of fast switchings between higher resistance ON and OFF states. Consequently, nanosecond switching times between multiple resistance states due to subnanosecond voltage pulses are demonstrated. Moreover, this finding provides the possibility of impedance engineering by the appropriate choice of voltage signals, which facilitates that both the set and reset transitions take place in an impedance matched manner to the surrounding circuit, demonstrating the merits of ultra-fast operation of Nb2O5 based neuromorphic networks.ISSN:2040-3364ISSN:2040-337
    corecore