45 research outputs found

    Perturbation Analysis of Heterochromatin-Mediated Gene Silencing and Somatic Inheritance

    Get PDF
    Repetitive sequences in eukaryotic genomes induce chromatin-mediated gene-silencing of juxtaposed genes. Many components that promote or antagonize silencing have been identified, but how heterochromatin causes variegated and heritable changes in gene expression remains mysterious. We have used inducible mis-expression in the Drosophila eye to recover new factors that alter silencing caused by the bwD allele, an insertion of repetitive satellite DNA that silences a bw+ allele on the homologous chromosome. Inducible modifiers allow perturbation of silencing at different times in development, and distinguish factors that affect establishment or maintenance of silencing. We find that diverse chromatin and RNA processing factors can de-repress silencing. Most factors are effective even in differentiated cells, implying that silent chromatin remains plastic. However, over-expression of the bantam microRNA or the crooked-legs (crol) zinc-finger protein only de-repress silencing when expressed in cycling cells. Over-expression of crol accelerates the cell cycle, and this is required for de-repression of silencing. Strikingly, continual over-expression of crol converts the speckled variegation pattern of bwD into sectored variegation, where de-repression is stably inherited through mitotic divisions. Over-expression of crol establishes an open chromatin state, but the factor is not needed to maintain this state. Our analysis reveals that active chromatin states can be efficiently inherited through cell divisions, with implications for the stable maintenance of gene expression patterns through development

    Interaction of RNA polymerase II and the small RNA machinery affects heterochromatic silencing in Drosophila

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Heterochromatin is the tightly packaged dynamic region of the eukaryotic chromosome that plays a vital role in cellular processes such as mitosis and meiotic recombination. Recent experiments in <it>Schizosaccharomyces pombe </it>have revealed the structure of centromeric heterochromatin is affected in RNAi pathway mutants. It has also been shown in fission yeast that the heterochromatin barrier is traversed by RNA Pol II and that the passage of RNA Pol II through heterochromatin is important for heterochromatin structure. Thus, an intricate interaction between the RNAi machinery and RNA Pol II affects heterochromatin structure. However, the role of the RNAi machinery and RNA Pol II on the metazoan heterochromatin landscape is not known. This study analyses the interaction of the small RNA machinery and RNA Pol II on <it>Drosophila </it>heterochromatin structure.</p> <p>Results</p> <p>The results in this paper show genetic and biochemical interaction between RNA Pol II (largest and second largest subunit) and small RNA silencing machinery components (<it>dcr-2, ago1, ago2, piwi, Lip [D], aub </it>and <it>hls</it>). Immunofluorescence analysis of polytene chromosomes from trans-heterozygotes of RNA Pol II and different mutations of the small RNA pathways show decreased H3K9me2 and mislocalization of Heterochromatin protein-1. A genetic analysis performed on these mutants showed a strong suppression of <it>white-mottled4h </it>position effect variegation. This was further corroborated by a western blot analysis and chromatin immunoprecipitation, which showed decreased H3K9me2 in trans-heterozygote mutants compared to wild type or single heterozygotes. Co-immunoprecipitation performed using <it>Drosophila </it>embryo extracts showed the RNA Pol II largest subunit interacting with Dcr-2 and dAGO1. Co-localization performed on polytene chromosomes showed RNA Pol II and dAGO1 overlapping at some sites.</p> <p>Conclusion</p> <p>Our experiments show a genetic and biochemical interaction between RNA Pol II (largest and second largest subunits) and the small RNA silencing machinery in <it>Drosophila</it>. The interaction has functional aspects in terms of determining H3K9me2 and HP-1 deposition at the chromocentric heterochromatin. Thus, RNA Pol II has an important role in establishing heterochromatin structure in <it>Drosophila</it>.</p

    Epigenetically-Inherited Centromere and Neocentromere DNA Replicates Earliest in S-Phase

    Get PDF
    Eukaryotic centromeres are maintained at specific chromosomal sites over many generations. In the budding yeast Saccharomyces cerevisiae, centromeres are genetic elements defined by a DNA sequence that is both necessary and sufficient for function; whereas, in most other eukaryotes, centromeres are maintained by poorly characterized epigenetic mechanisms in which DNA has a less definitive role. Here we use the pathogenic yeast Candida albicans as a model organism to study the DNA replication properties of centromeric DNA. By determining the genome-wide replication timing program of the C. albicans genome, we discovered that each centromere is associated with a replication origin that is the first to fire on its respective chromosome. Importantly, epigenetic formation of new ectopic centromeres (neocentromeres) was accompanied by shifts in replication timing, such that a neocentromere became the first to replicate and became associated with origin recognition complex (ORC) components. Furthermore, changing the level of the centromere-specific histone H3 isoform led to a concomitant change in levels of ORC association with centromere regions, further supporting the idea that centromere proteins determine origin activity. Finally, analysis of centromere-associated DNA revealed a replication-dependent sequence pattern characteristic of constitutively active replication origins. This strand-biased pattern is conserved, together with centromere position, among related strains and species, in a manner independent of primary DNA sequence. Thus, inheritance of centromere position is correlated with a constitutively active origin of replication that fires at a distinct early time. We suggest a model in which the distinct timing of DNA replication serves as an epigenetic mechanism for the inheritance of centromere position

    The RNA Helicase Rm62 Cooperates with SU(VAR)3-9 to Re-Silence Active Transcription in Drosophila melanogaster

    Get PDF
    Gene expression is highly dynamic and many genes show a wide range in expression over several orders of magnitude. This regulation is often mediated by sequence specific transcription factors. In addition, the tight packaging of DNA into chromatin can provide an additional layer of control resulting in a dynamic range of gene expression covering several orders of magnitude. During transcriptional activation, chromatin barriers have to be eliminated to allow an efficient progression of the RNA polymerase. This repressive chromatin structure has to be re-established quickly after it has been activated in order to tightly regulate gene activity. We show that the DExD/H box containing RNA helicase Rm62 is targeted to a site of rapid induction of transcription where it is responsible for an increased degree of methylation at H3K9 at the heat shock locus after removal of the heat shock stimulus. The RNA helicase interacts with the well-characterized histone methyltransferase SU(VAR)3-9 via its N-terminus, which provides a potential mechanism for the targeting of H3K9 methylation to highly regulated genes. The recruitment of SU(VAR)3-9 through interaction with a RNA helicase to a site of active transcription might be a general mechanism that allows an efficient silencing of highly regulated genes thereby enabling a cell to fine tune its gene activity over a wide range

    Advancing our understanding of functional genome organisation through studies in the fission yeast

    Get PDF
    Significant progress has been made in understanding the functional organisation of the cell nucleus. Still many questions remain to be answered about the relationship between the spatial organisation of the nucleus and the regulation of the genome function. There are many conflicting data in the field making it very difficult to merge published results on mammalian cells into one model on subnuclear chromatin organisation. The fission yeast, Schizosaccharomyces pombe, over the last decades has emerged as a valuable model organism in understanding basic biological mechanisms, especially the cell cycle and chromosome biology. In this review we describe and compare the nuclear organisation in mammalian and fission yeast cells. We believe that fission yeast is a good tool to resolve at least some of the contradictions and unanswered questions concerning functional nuclear architecture, since S. pombe has chromosomes structurally similar to that of human. S. pombe also has the advantage over higher eukaryotes in that the genome can easily be manipulated via homologous recombination making it possible to integrate the tools needed for visualisation of chromosomes using live-cell microscopy. Classical genetic experiments can be used to elucidate what factors are involved in a certain mechanism. The knowledge we have gained during the last few years indicates similarities between the genome organisation in fission yeast and mammalian cells. We therefore propose the use of fission yeast for further advancement of our understanding of functional nuclear organisation

    Identification of Genes That Promote or Antagonize Somatic Homolog Pairing Using a High-Throughput FISH–Based Screen

    Get PDF
    The pairing of homologous chromosomes is a fundamental feature of the meiotic cell. In addition, a number of species exhibit homolog pairing in nonmeiotic, somatic cells as well, with evidence for its impact on both gene regulation and double-strand break (DSB) repair. An extreme example of somatic pairing can be observed in Drosophila melanogaster, where homologous chromosomes remain aligned throughout most of development. However, our understanding of the mechanism of somatic homolog pairing remains unclear, as only a few genes have been implicated in this process. In this study, we introduce a novel high-throughput fluorescent in situ hybridization (FISH) technology that enabled us to conduct a genome-wide RNAi screen for factors involved in the robust somatic pairing observed in Drosophila. We identified both candidate “pairing promoting genes” and candidate “anti-pairing genes,” providing evidence that pairing is a dynamic process that can be both enhanced and antagonized. Many of the genes found to be important for promoting pairing are highly enriched for functions associated with mitotic cell division, suggesting a genetic framework for a long-standing link between chromosome dynamics during mitosis and nuclear organization during interphase. In contrast, several of the candidate anti-pairing genes have known interphase functions associated with S-phase progression, DNA replication, and chromatin compaction, including several components of the condensin II complex. In combination with a variety of secondary assays, these results provide insights into the mechanism and dynamics of somatic pairing

    Quantitative Microscopy Reveals Centromeric Chromatin Stability, Size, and Cell Cycle Mechanisms to Maintain Centromere Homeostasis

    Get PDF
    The deposited item is a book chapter and is part of the series "Centromeres and Kinetochores" published by the publisher Springer Verlag. The deposited book chapter is a post-print version and has been submitted to peer reviewing. There is no public supplementary material available for this publication. This publication hasn't any creative commons license associated.Centromeres are chromatin domains specified by nucleosomes containing the histone H3 variant, CENP-A. This unique centromeric structure is at the heart of a strong self-templating epigenetic mechanism that renders centromeres heritable. We review how specific quantitative microscopy approaches have contributed to the determination of the copy number, architecture, size, and dynamics of centromeric chromatin and its associated centromere complex and kinetochore. These efforts revealed that the key to long-term centromere maintenance is the slow turnover of CENP-A nucleosomes, a critical size of the chromatin domain and its cell cycle-coupled replication. These features come together to maintain homeostasis of a chromatin locus that directs its own epigenetic inheritance and facilitates the assembly of the mitotic kinetochore.There are no funders and sponsors indicated explicitly in the document.info:eu-repo/semantics/publishedVersio
    corecore