80 research outputs found

    First Evidence of Reproductive Adaptation to “Island Effect” of a Dwarf Cretaceous Romanian Titanosaur, with Embryonic Integument In Ovo

    Get PDF
    <div><h3>Background</h3><p>The Cretaceous vertebrate assemblages of Romania are famous for geographically endemic dwarfed dinosaur taxa. We report the first complete egg clutches of a dwarf lithostrotian titanosaur, from Toteşti, Romania, and its reproductive adaptation to the “island effect”.</p> <h3>Methodology/Findings</h3><p>The egg clutches were discovered in sequential sedimentary layers of the Maastrichtian Sânpetru Formation, Toteşti. The occurrence of 11 homogenous clutches in successive strata suggests philopatry by the same dinosaur species, which laid clutches averaging four ∼12 cm diameters eggs. The eggs and eggshells display numerous characters shared with the positively identified material from egg-bearing level 4 of the Auca Mahuevo (Patagonia, Argentina) nemegtosaurid lithostrotian nesting site. Microscopic embryonic integument with bacterial evidences was recovered in one egg. The millimeter-size embryonic integument displays micron size dermal papillae implying an early embryological stage at the time of death, likely corresponding to early organogenesis before the skeleton formation.</p> <h3>Conclusions/Significance</h3><p>The shared oological characters between the Haţeg specimens and their mainland relatives suggest a highly conservative reproductive template, while the nest decrease in egg numbers per clutch may reflect an adaptive trait to a smaller body size due to the “island effect”. The combined presence of the lithostrotian egg and its embryo in the Early Cretaceous Gobi coupled with the oological similarities between the Haţeg and Auca Mahuevo oological material evidence that several titanosaur species migrated from Gondwana through the Haţeg Island before or during the Aptian/Albian. It also suggests that this island might have had episodic land bridges with the rest of the European archipelago and Asia deep into the Cretaceous.</p> </div

    Variation, variability, and the origin of the avian endocranium:Insights from the anatomy of alioramus altai (theropoda: Tyrannosauroidea)

    Get PDF
    The internal braincase anatomy of the holotype of Alioramus altai, a relatively small-bodied tyrannosauroid from the Late Cretaceous of Mongolia, was studied using high-resolution computed tomography. A number of derived characters strengthen the diagnosis of this taxon as both a tyrannosauroid and a unique, new species (e.g., endocranial position of the gasserian ganglion, internal ramification of the facial nerve). Also present are features intermediate between the basal theropod and avialan conditions that optimize as the ancestral condition for Coelurosauria--a diverse group of derived theropods that includes modern birds. The expression of several primitive theropod features as derived character states within Tyrannosauroidea establishes previously unrecognized evolutionary complexity and morphological plasticity at the base of Coelurosauria. It also demonstrates the critical role heterochrony may have played in driving patterns of endocranial variability within the group and potentially reveals stages in the evolution of neuroanatomical development that could not be inferred based solely on developmental observations of the major archosaurian crown clades. We discuss the integration of paleontology with variability studies, especially as applied to the nature of morphological transformations along the phylogenetically long branches that tend to separate the crown clades of major vertebrate groups

    A New Crocodylian from the Late Maastrichtian of Spain: Implications for the Initial Radiation of Crocodyloids

    Get PDF
    The earliest crocodylians are known primarily from the Late Cretaceous of North America and Europe. The representatives of Gavialoidea and Alligatoroidea are known in the Late Cretaceous of both continents, yet the biogeographic origins of Crocodyloidea are poorly understood. Up to now, only one representative of this clade has been known from the Late Cretaceous, the basal crocodyloid Prodiplocynodon from the Maastrichtian of North America.The fossil studied is a skull collected from sandstones in the lower part of the Tremp Formation, in Chron C30n, dated at -67.6 to 65.5 Ma (late Maastrichtian), in Arén (Huesca, Spain). It is located in a continuous section that contains the K/P boundary, in which the dinosaur faunas closest to the K/P boundary in Europe have been described, including Arenysaurus ardevoli and Blasisaurus canudoi. Phylogenetic analysis places the new taxon, Arenysuchus gascabadiolorum, at the base of Crocodyloidea.The new taxon is the oldest crocodyloid representative in Eurasia. Crocodyloidea had previously only been known from the Palaeogene onwards in this part of Laurasia. Phylogenetically, Arenysuchus gascabadiolorum is situated at the base of the first radiation of crocodyloids that occurred in the late Maastrichtian, shedding light on this part of the cladogram. The presence of basal crocodyloids at the end of the Cretaceous both in North America and Europe provides new evidence of the faunal exchange via the Thulean Land Bridge during the Maastrichtian

    High circulating osteoprotegerin levels are associated with non-zero blood groups

    Get PDF
    Background: Osteoprotegerin (OPG) and von Willebrand factor (VWF) form complex within endothelial cells and following secretion. The nature of blood group antigens strongly influences the levels of circulating VWF, but there is no available data concerning its ascendancy on OPG levels. We aimed to assess the relationship of AB0 blood groups with OPG, VWF levels (VWF: Ag) and collagen binding activity (VWF: CB) in peripheral arterial disease (PAD) patients. Methods: Functional and laboratory parameters of 105 PAD patients and 109 controls were examined. Results of OPG, VWF: Ag, VWF: CB (ELISA-s) were analysed by comparative statistics, together with clinical data. Results: OPG levels were higher in patients than in controls (4.64 ng/mL vs. 3.68 ng/mL, p < 0.001). Among patients elevation was marked in the presence of critical limb ischemia (5.19 ng/mL vs. 4.20 ng/mL, p = 0.011). The OPG in patients correlated positively with VWF: Ag and VWF: CB (r = 0.26, p = 0.008; r = 0.33, p = 0.001) and negatively with ankle-brachial pressure index (r = -0.22, p = 0.023). Furthermore, OPG was significantly elevated in non-0 blood groups compared to 0-groups both in patients and controls (4.95 ng/mL vs. 3.90 ng/mL, p = 0.012 and 4.09 ng/mL vs. 3.40 ng/mL, p = 0.002). Conclusions: OPG levels are associated to blood group phenotypes and higher in non-0 individuals. Increased OPG levels in PAD characterize disease severity. The significant correlation between OPG and VWF: CB might have functional importance in an atherothrombosis-prone biological environment

    The last dinosaurs of Brazil: The Bauru Group and its implications for the end-Cretaceous mass extinction

    Get PDF
    ABSTRACT The non-avian dinosaurs died out at the end of the Cretaceous, ~66 million years ago, after an asteroid impact. The prevailing hypothesis is that the effects of the impact suddenly killed the dinosaurs, but the poor fossil record of latest Cretaceous (Campanian-Maastrichtian) dinosaurs from outside Laurasia (and even more particularly, North America) makes it difficult to test specific extinction scenarios. Over the past few decades, a wealth of new discoveries from the Bauru Group of Brazil has revealed a unique window into the evolution of terminal Cretaceous dinosaurs from the southern continents. We review this record and demonstrate that there was a diversity of dinosaurs, of varying body sizes, diets, and ecological roles, that survived to the very end of the Cretaceous (Maastrichtian: 72-66 million years ago) in Brazil, including a core fauna of titanosaurian sauropods and abelisaurid and carcharodontosaurid theropods, along with a variety of small-to-mid-sized theropods. We argue that this pattern best fits the hypothesis that southern dinosaurs, like their northern counterparts, were still diversifying and occupying prominent roles in their ecosystems before the asteroid suddenly caused their extinction. However, this hypothesis remains to be tested with more refined paleontological and geochronological data, and we give suggestions for future work

    New frogs from the latest Cretaceous of Hateg Basin, Romania

    No full text
    The latest Cretaceous (Maastrichtian) fluvio−lacustrine deposits of Haţeg Basin (Romania) have yielded a number of aquatic and terrestrial microvertebrates, including dissociated skeletal remains of the following anuran taxa: Hatzegobatrachus grigorescui gen. et sp. nov., Paralatonia transylvanica gen. et sp. nov., andAnura indet. H. grigorescui sp. nov. (type species), retaining some leiopelmatid−grade anuran features, is diagnosed as a small−sized primitive frog with still unclear relationships. P. transylvanica sp. nov. (type species) is a middle−sized discoglossine frog. Based on the characters of jaw−bones andpost−cranial skeletal elements, it appears as intermediate between primitive (Eodiscoglossus−like) andmore derived (Latonia−like) discoglossine discoglossid. In Hatzegobatrachus and Paralatonia the morphology of the hipbones shows that they differ in saltatorial abilities. Consequently, these forms may have occupied distinct ecological niches, suggesting that the latest Cretaceous microvertebrate assemblages of Haţeg Basin were connectedto more complex ecosystems than considered before
    corecore