17 research outputs found

    Comment on "Exactly central heavy-ion collisions by nuclear hydrodynamics"

    Get PDF
    Problems arising in viscous nuclear fluid dynamical models of high-energy heavy-ion collisions are discussed. The importance of an accurate treatment of the transport properties of the hot and dense nuclear matter is pointed out

    Direct nucleonemission from hot and dense regions described in the hydrodynamical model of relativistic heavy ion collisions

    Get PDF
    The collision process is described by hydrodynamical equations. The escape of nucleons which do not take part in the thermal equilibrium is considered by including drain terms in these equations. The energy spectra of the escaped nucleons and of nucleons evaporated after the breakup of the fluid are compared. NUCLEAR REACTIONS Relativistic heavy ion reactions, nuclear hydrodynamics, nucleon spectra

    Importance of nuclear viscosity and thermal conductivity and the analysis of the bounce-off effect in high energy heavy ion collisions

    Get PDF
    We present an analysis of high energy heavy ion collisions at intermediate impact parameters, using a two-dimensional fluid-dynamical model including shear and bulk viscosity, heat conduction, a realistic treatment of the nuclear binding, and an analysis of the final thermal emission of free nucleons. We find large collective momentum transfer to projectile and target residues (the highly inelastic bounce-off effect) and explosion of the hot compressed shock zones formed during the impact. As the calculated azimuthal dependence of energy spectra and angular distributions of emitted nucleons depends strongly on the coefficients of viscosity and thermal conductivity, future exclusive measurements may allow for an experimental determination of these transport coefficients. The importance of 4π measurements with full azimuthal information is pointed out

    Quark number scaling in fluid dynamics and hadronization via quarkyonic matter

    Get PDF
    NCQ scaling of elliptic flow is studied in a non-equilibrium hadronization and freeze-out model from ideal, deconfined and chirally symmetric Quark Gluon Plasma (QGP), to final non-interacting hadrons. In this transition the quarks gain constituent quark mass while the background Bag-field breaks up. The constituent quarks then recombine into simplified hadron states, while chemical, thermal and flow equilibrium break down. Then the resulting temperatures and flow velocities of baryons and mesons will be different. In a simplified model, we reproduce the constituent quark number scaling

    Supercooling of rapidly expanding quark-gluon plasma

    Get PDF
    We reexamine the scenario of homogeneous nucleation of the quark-gluon plasma produced in ultra-relativistic heavy ion collisions. A generalization of the standard nucleation theory to rapidly expanding system is proposed. The nucleation rate is derived via the new scaling parameter Z. It is shown that the size distribution of hadronic clusters plays an important role in the dynamics of the phase transition. The longitudinally expanding system is supercooled to about 3 6%, then it is reheated, and the hadronization is completed within 6 10 fm/c, i.e. 5 10 times faster than it was estimated earlier, in a strongly nonequilibrium way. PACS: 12.38.Mh; 12.39.Ba; 25.75.-q; 64.60.Q

    Macroscopic nucleon-nucleon correlations caused by the bounce-off process in energetic collisions of heavy nuclei

    Get PDF
    Two-particle correlation data are presented for the reaction Ar (800 MeV/ nucleon) + Pb. The experimental results are analyzed in the nuclear fluid dynamical and in a linear cascade model. We demonstrate that the collective hydrodynamical correlations dominate the measured two-particle correlation function for the heavy system studied. We discuss the transition from the early stages of the reaction which are governed by few nucleon correlations, to the later stages with their macroscopic flow which can only be reached using heavy colliding systems. The sensitivity of the correlation data on the underlying compressional dissipative processes is analyzed

    Three-component fluid dynamics for the description of energetic heavy-ion reactions

    Get PDF
    The nucleons taking part in heavy ion reaction are considered as a three-component fluid. The first and second components correspond to the nucleons of the target and the projectile, while the thermalized nucleons produced in the course of the collision belong to the third component. Making use of the Boltzmann equation, hydrodynamical equations are derived. An equation of state for anisotropic nuclear matter obtained from a field theoretical model in mean field approximation is applied in a one dimensional version of the three-component fluid model. The speed of thermalization is analyzed and compared to the results of cascade and kinetic models. NUCLEAR REACTIONS Relativistic heavy-ion reactions, hydrodynamic description

    Fragment emission in high-energy heavy-ion reactions

    Get PDF
    We present a theoretical description of nuclear collisions which consists of a three-dimensional fluid-dynamical model, a chemical equilibrium breakup calculation for local light fragment (i.e., p, n, d, t, 3He, and 4He) production, and a final thermal evaporation of these particles. The light fragment cross sections and some properties of the heavy target residues are calculated for the asymmetric system Ne+U at 400 MeV/N. The results of the model calculations are compared with recent experimental data. Several observable signatures of the collective hydrodynamical processes are consistent with the present data. An event-by-event analysis of the flow patterns of the various clusters is proposed which can yield deeper insight into the collision dynamics

    Quantitative analysis of the relation between entropy and nucleosynthesis in central Ca + Ca and Nb + Nb collisions

    Get PDF
    The final states of central Ca + Ca and Nb + Nb collisions at 400 and 1050 MeV/nucleon and at 400 and 650 MeV/nucleon, respectively, are studied with two independently developed statistical models, namely the classical microcanonical model and the quantum-statistical grand canonical model. It is shown that these models are in agreement with each other for these systems. Furthermore, it is demonstrated that there is essentially a one-to-one relationship between the observed relative abundances of the light fragments p, d, t, 3He, and α and the entropy per nucleon, for breakup temperatures greater than 30 MeV. Entropy values of 3.5–4 are deduced from high-multiplicity selected fragment yield data

    Non-ideal particle distributions from kinetic freeze out models

    Get PDF
    In fluid dynamical models the freeze out of particles across a three dimensional space-time hypersurface is discussed. The calculation of final momentum distribution of emitted particles is described for freeze out surfaces, with both space-like and time-like normals, taking into account conservation laws across the freeze out discontinuity
    corecore