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Abstract

We reexamine the scenario of homogeneous nucleation of the quark-gluon plasma
produced in ultra-relativistic heavy ion collisions. A generalization of the standard
nucleation theory to rapidly expanding system is proposed. The nucleation rate is
derived via the new scaling parameter \z. It is shown that the size distribution of
hadronic clusters plays an important role in the dynamics of the phase transition.
The longitudinally expanding system is supercooled to about 3 — 6%, then it is
reheated, and the hadronization is completed within 6 — 10 fm/c, i.e. 5 — 10 times
faster than it was estimated earlier, in a strongly nonequilibrium way.
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Homogeneous nucleation of quark-gluon plasma (QGP) produced in ultra-
relativistic heavy ion collisions has been subject of interest during the last few
years. Obviously, the plasma must hadronize, but the mechanism of hadroniza-
tion still remains an open question. In case of a second order phase transition,
percolation model calculations are useful, also for strong supercooling of the
plasma during a first order phase transition, provided the expansion is rapid
and the amount of the plasma converted into hadronic matter is not sufficiently
large to reheat the growing volume.

Results of simulations [1,2] show that the supercooling of the system, if quenched
rapidly into the metastable or even unstable region, may be as large as 20%.
Then it is questionable whether the homogeneous nucleation scheme is appro-
priate for the description of the hadronization process. Other processes which
may cause a rapid hadronization of QGP have been studied recently [3,4].

In the present paper we propose a generalization of the standard nucleation
theory to rapidly expanding systems. If the size distribution of hadronic bub-
bles is taken into account, the total rate of the plasma conversion turns out
to be high enough to prevent the system from strong supercooling. The last
circumstance makes relevant the application of the homogeneous nucleation
scenario.

The paper is organized as follows: after a sketch of the nucleation theory the
dynamics of the plasma—hadrons phase transition in the Bjorken hydrody-
namic model [5] is discussed. Finally, conclusions will be drawn.

The starting point of the homogeneous nucleation theory is the assumption of
formation of nucleating clusters within the initially homogeneous metastable
state. The rate of conversion of the metastable state into a thermodynami-
cally stable phase is called nucleation rate. According to Langer [6], who has
extended the classical nucleation theory (see, e.g. [7] and references herein) to
field theories, the rate of the relaxation of a metastable state is given by

I = %QO exp (—BAF,) (1)

where x and €)y is a dynamical prefactor and a statistical prefactor, respec-
tively, AF, is the excess free energy of the cluster of critical size, 8 = (kgT) 7!,
kg is the Boltzmann constant, and 7T is the temperature of the system.

Let us consider a classical system with N degrees of freedom described by a
set of N collective coordinates &, i = 1,..., N. The energy function E({¢})
of the system should have two locally stable states separated by the energy
barrier. The point with minimal energy on the barrier {£°} is the so-called
saddle point.



The statistical prefactor €2y is a measure of the available phase space volume
of the saddle point region. If the fluctuation corrections to the (mean field)
excess free energy of the cluster are absorbed into AF, the statistical prefactor

[6] can be written as
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V' is the volume of the system, o is the surface tension, and A; is the only
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The dynamical prefactor x determines the growth rate of the critical cluster
at the saddle point. For a relativistic system of particles, where the thermal
conductivity is absent because of the absence of the rest frame defined by the
baryon net charge, the dynamical prefactor has been calculated [8] to be
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Here ¢ and 7 is the shear and bulk viscosity, Aw is the difference in the
enthalpy densities of the quark-gluon phase and hadronic phase, and R, is the
radius of the critical cluster.

We will explore a model QGP, produced in the collision of ultrarelativistic
heavy ions, and subsequently rapidly quenched into the metastable region
below the critical temperature. Then the first order phase transition should
occur. It will be triggered by the creation of hadronic clusters as a result of the
thermodynamic fluctuations. The Fisher droplet model [9] yields the change
in the free energy of the system due to the formation of a spherical cluster of
radius R

4
AF(R) = —%R?’Ap + 47 R*0 + 3Tpﬂ_lll’l§ . (4)

Here Ap = pj, — pygp is the difference of the pressures inside and outside the
cluster, 7 = 2.2 is the critical exponent, and 7 is the radius of the smallest
cluster formed in the system. The maximum of the AF(R) will be reached at
the critical radius

1/3

1/3
R, = (al + \/a§’+a%> + (al - \/a§’+a%) + asz, (5)
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Clusters whose radii are smaller than R, are shrinking, clusters whose radii
are larger than R, are growing, and clusters of critical size are in metastable
equilibrium. It is convenient to parametrize the excess free energy of a cluster

by the similarity number Ay = R.\/4wo 3 [10] and reduced radius r = R/R.

containing a; = Ay = —ag , as a = /4mwof .
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Then for the only negative eigenvalue \;, associated with the instability of the
critical cluster against growth or shrinking, we have

M= —(97F +2)5)87" . (7)

Substitution of this result in Eq. (2) gives finally for the statistical prefactor
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The result for the total nucleation rate I reads
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where AF, = —% (1 —3In —) + £ is the free energy of the critical cluster.
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The formula (9) is similar to, but also different from the earliar expression [8].
Near the critical temperature this rate drops since the critical radius R, in-
creases to infinity. Then the nucleation rate rises quickly when the temperature
falls, and the first order phase transition begins.

From the definition of the nucleation rate, this is just a number of viable
clusters in volume V passed through the critical region per unit of time. If
the total volume of the hadronic phase is not large enough to maintain the
temperature of the expanding system at a constant level due to the release of
the latent heat, the temperature will continue to decrease.

On the other hand, the critical radius drops very quickly with decreasing
temperature. Therefore, the subcritical clusters which started to dissolve (Fig.
1, upper panel) suddenly become of supercritical size with respect to the new
critical radius R, of the system (Fig. 1, lower panel). The general picture of the
conversion of QGP into hadronic clusters will be rather complex. Clusters large



enough will grow, the smallest ones will continue to shrink, while the clusters
of medium size will grow or shrink depending on temperature variations and
current critical radii in the system.

It is worth noting that the model presented above is valid for the hadronization
of thermalized QGP produced in a large volume (of about 500 fm?® or more).
For smaller systems, the finite size effects [11] lead to the shift of the critical
temperature and rounding of the phase transition, but the discussion of these
problems lies out of scope of the present paper.

At given temperature T, the size distribution of clusters in the droplet model
with the curvature energy is found to be [12]
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Hadronic matter in our calculations is represented by a discrete spectrum of
spherical bubbles starting from ry = 1 fm.

Within the framework of the bag model the equations of state for two-flavour
QGP and for hadronic gas are

37

Pagp = %”2T4 - B, (11)
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With the bag constant BY* = 235 MeV this gives us the critical temperature
T, = 169 MeV.

The Bjorken model of longitudinal expansion [5] yields for the evolution of the
energy density e

de__e+p (13)

-

The energy density of the whole system, as well as the enthalpy, is a linear
combination of the energy density of the plasma ey, in the part of volume
occupied by plasma, vy, = Vigp/Viet, and the energy density of hadronic phase
ep, in the rest of the volume, v, =1 — vy,

e = CqgpVagp + (1 — Vyggp)en - (14)



To determine the viscous term in Eq. (3), note that the bulk viscosity is much
smaller as compared with the shear viscosity, which has been derived in leading
logarithmic order of QCD [13] for a QGP with two flavours as

1.2973

= ol (lag) (15)
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Here ag = 0.23 is the strong coupling constant.

The last important parameter for our analysis is the value of the surface
tension . Recent lattice QCD calculations [14,15] predict 0.01 < /T2 < 0.1,
ie. 1.25 < o0 < 12.5 MeV/fm? for the given T,. We will use ¢ = 2 and 5
MeV/fm? in our simulations.

Following [1,2], our scenario of longitudinal expansion presumes that the sys-
tem reaches the critical temperature at the time 7., = 8 73,5 = 3fm/c. From
Fig. 2 it is apparent that the large amount of latent heat, released during
the conversion process, is sufficient to prevent the expanding system from the
supercooling below 3 — 6 %.

To investigate the effect of the dissipative processes on the course of the phase
transition, Fig. 2 shows also results of calculations, in which Eq. (13) has been
replaced [16] by

de __e+p (H3n
dr T T2

(16)

One can see that the supercooling of a viscous plasma is weaker than that of
an ideal QGP. This circumstance delays the homogeneous nucleation by only
about 2 — 3 fm/c. Creation of hadronic bubbles is the main mechanism of the
QGP conversion at the earlier stage of the transition. Apart from the first fm/c
of cooling the mixed system is reheated continuously, and the temperature
approaches the critical one.

This occurs up to = 6 fm/c, then the behaviour of the system changes drasti-
cally: diffusion growth of the "old” bubbles (Fig. 3, upper panels) dominates
the creation of new bubbles, which is practically turned off. When T is close
to T,, the growth process stops, but it starts again immediately after a small
extra-cooling of the system. This is a highly unstable region. Even an insignifi-
cant rise of the temperature is sufficient for the system to hit the critical point,
then the homogeneous nucleation scheme is no longer relevant. Therefore, the
spinodal decomposition or the percolation scenario may be appropriate to
describe the strongly non-equilibrium hadronization of the rest of the QGP,
which constitutes about 30 — 35% of the total volume.



The size distribution of the hadronic bubbles at different stages of the phase
transition is shown in lower panels of Fig. 3. We see that the initially broad
plateau of the distribution function becomes narrower with the rise of the
radius due to the increase of the number of bubbles per unit of radial interval.
The distribution functions reach their maximum values with a radius of about
3 < r < 4.5fm. At the very beginning of the nucleation almost all bubbles
enlarge their volumes. Then the bubbles of r < 1.5 fm dissolve because their
radii are smaller than the critical one. In contrast, the bubbles of » > 4fm
will stop to grow only if the temperature of the system will be very close to
the critical temperature. Bubbles of size 1.5 < r < 4fm are either growing
or shrinking due to the variations of the critical radius in the system. This
leads to the appearance of the irregularities in the spectrum of small and
intermediate-size bubbles (Fig. 3, right lower panel).

As a consequence, there will be no unique source of pion emission at the freeze-
out. The individual pairs of pions are coming from sources of r &~ 1.5 — 2 fm,
while the major part of pions should come from relatively large sources of
3 < r < 4.5fm. This can be checked by the analysis of the particle correlation
data and by the rapidity distributions, if the hadronic clusters will be well
separated along the expansion axis; this problem has to be investigated.

In conclusion, we study two-flavour QGP undergoing a first order phase tran-
sition during the longitudinal expansion. The nucleation rate is derived via
the new scaling parameter \z. It is shown that the distribution of hadronic
clusters in size plays an essential role in the dynamics of plasma hadronization
near the critical temperature: there is a significant variation of the value of
critical cluster in the system. The supercooling of QGP is found to be rela-
tively moderate, 3 — 6% only, therefore the application of the homogeneous
nucleation scenario seems to be quite reasonable.

The completion time of the transition varies from 6 to 10 fm/c. It is strongly
dependent on the absolute value of the interfacial energy. The weaker the
surface tension o of the interface is, the faster the hadronization will be, and
vice versa. Since recent lattice QCD results [15] favour lower values of o, it
is likely that the QGP hadronizes within first eight fm/c’s, i.e. very close to
the currant estimations of the freeze-out time scale based on HBT data and
microscopic models. Thus the completion time of the homogeneous nucleation
stage is about 5 — 10 times shorter than those of the standard nucleation
scheme obtained before [1,2].

The size distribution of the hadronic clusters indicates that most of the pions
are emitted from sources of about 3 < r < 4.5fm. This signal may be inves-
tigated experimentally by means of the particle interferometry and, probably,
by the rapidity spectra of secondaries on an event-by-event basis.
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Fig. 1. Distribution of clusters as a function of their radius R. Due to the rapid falloff
of the critical radius with temperature, the clusters of subcritical sizes (upper panel)
formed at the moment 73 become supercritically sized (lower panel) at 71 + A7.
Consequently, the amount of matter converted into hadrons increases.
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Fig. 2. The temperature as a function of the proper time for the phase transition
QGP — hadrons during the longitudinal expansion. Upper and lower panel rep-
resents the results of calculations with ¢ = 2 and 5 MeV /fm?, respectively. The
solid/dashed curves correspond to calculations with Eq. (13)/Eq. (16).
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Fig. 3. Upper : The part of the QGP volume converted into hadrons for system

with o = 2 (left panel) and 5 MeV/fm? (right panel). Solid lines correspond to the
total volume fractions of hadrons, dashed lines denote the increase of the hadronic
volume due to the creation of new bubbles, and dash-dotted lines indicate the
enlargement of the hadronic bubbles due to diffusion. Lower : Size distribution
of the hadronic bubbles at A7 = 1fm/c after the beginning of the nucleation (left
panel), and at the freeze-out (right panel) with o = 2 (solid curves) and 5 MeV /fm?
(dashed curves).
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