38 research outputs found

    Mitochondrial Ultrastructure is Coupled to Synaptic Performance at Axonal Release Sites

    Get PDF
    Mitochondrial function in neurons is tightly linked with metabolic and signaling mechanisms that ultimately determine neuronal performance. The subcellular distribution of these organelles is dynamically regulated as they are directed to axonal release sites on demand, but whether mitochondrial internal ultrastructure and molecular properties would reflect the actual performance requirements in a synapse-specific manner, remains to be established. Here, we examined performance-determining ultrastructural features of presynaptic mitochondria in GABAergic and glutamatergic axons of mice and human. Using electron-tomography and super-resolution microscopy we found, that these features were coupled to synaptic strength: mitochondria in boutons with high synaptic activity exhibited an ultrastructure optimized for high rate metabolism and contained higher levels of the respiratory chain protein cytochrome-c (CytC) than mitochondria in boutons with lower activity. The strong, cell type-independent correlation between mitochondrial ultrastructure, molecular fingerprints and synaptic performance suggests that changes in synaptic activity could trigger ultrastructural plasticity of presynaptic mitochondria, likely to adjust their performance to the actual metabolic demand

    Late cardiac effect of anthracycline therapy in physically active breast cancer survivors - a prospective study

    Get PDF
    The late-onset cardiotoxic effect of anthracycline is known, however the early detection and prevention of subclinical myocardial damage has not been fully understood yet. Besides medical therapy regular physical activities may also play a role in the prevention and reduction of side effects of chemotherapy. The aim of our present study was to detect the effect of regular physical activities on the diastolic function and on the symptoms of late heart failure in case of anthracycline chemotherapy. The prospective study included 55 female patients (age 31-65 year, average 49.5 years) with breast cancer and no cardiovascular risk factors. Proper cardiologic checkup included physical examination (blood pressure, pulse, etc.), ECG, standard echocardiography parameters (EF, LV dimensions etc.) and specific tissue Doppler (TDI) measurements. Symptoms of heart failure were also recorded. After five years of follow-up, symptoms of heart failure were evaluated again. Patients were assigned into two groups depending on their physical activity: 36 patients did perform regular physical activities (mean age 49.2 years) and 19 patients did not (average age 50.1 years). There was no significant difference between the two groups in basic physiological or standard echocardiography parameters neither at the baseline nor at the later time points. Diastolic dysfunction (decreased E/A) was detected 6 months after the beginning of the treatment (T2 time point) in both groups. In the inactive group this value fell below one however there was no significant difference (1.1+/-0.25 vs. 0.95+/-0.22). One year after the beginning of the treatment (T3) a significant difference could be detected between the two groups (1.05+/-0.28 vs. 0.86+/-0.25. P=0.038). Consistent change in diastolic function (Ea/Aa) could be detected with the more sensitive TDI (Tissue Doppler Imaging) measurements after treatments in both groups, especially in the septal segment (in the non active group the Ea/Aa decreased markedly but not significantly at T2 - 1.1+/-0.55 vs. 0.81+/-0.44, and this difference became significant at T3 and 2 years after treatment (T4), p=0.007 and p=0.065). The filling pressure (E/Ea) rose above 10 (p=0.09) in the non active group at T2; and it kept rising in both groups and became significant at T3 (p=0.012). Five years after the onset of the treatment symptoms of heart failure were less frequently reported in the physically active group than in the inactive one (19.45% vs. 68.42%). The data of our study show that the diastolic dysfunction of the left ventricle related to the anthracycline therapy became evident in the physically active group later and the symptoms of heart failure were less frequent than in the non active group after five years period. Enrollment in sport activities could be a good means for partial prevention in this group of patients. Cardiologic checkup at proper intervals plays a pivotal role in detection of possible cardiotoxicity. This is a strong indication for changes in the lifestyle of the patient and the treatment protocol alike

    Hippocampal GABAergic Synapses Possess the Molecular Machinery for Retrograde Nitric Oxide Signaling

    Get PDF
    Nitric oxide (NO) plays an important role in synaptic plasticity as a retrograde messenger at glutamatergic synapses. Here we describe that, in hippocampal pyramidal cells, neuronal nitric oxide synthase (nNOS) is also associated with the postsynaptic active zones of GABAergic symmetrical synapses terminating on their somata, dendrites, and axon initial segments in both mice and rats. The NO receptor nitric oxide-sensitive guanylyl cyclase (NOsGC) is present in the brain in two functional subunit compositions: alpha1beta1 and alpha2beta1. The beta1 subunit is expressed in both pyramidal cells and interneurons in the hippocampus. Using immunohistochemistry and in situ hybridization methods, we describe that the alpha1 subunit is detectable only in interneurons, which are always positive for beta1 subunit as well; however, pyramidal cells are labeled only for beta1 and alpha2 subunits. With double-immunofluorescent staining, we also found that most cholecystokinin- and parvalbumin-positive and smaller proportion of the somatostatin- and nNOS-positive interneurons are alpha1 subunit positive. We also found that the alpha1 subunit is present in parvalbumin- and cholecystokinin-positive interneuron terminals that establish synapses on somata, dendrites, or axon initial segments. Our results demonstrate that NOsGC, composed of alpha1beta1 subunits, is selectively expressed in different types of interneurons and is present in their presynaptic GABAergic terminals, in which it may serve as a receptor for NO produced postsynaptically by nNOS in the very same synapse

    Cellular architecture and transmitter phenotypes of neurons of the mouse median raphe region

    Get PDF
    The median raphe region (MRR, which consist of MR and paramedian raphe regions) plays a crucial role in regulating cortical as well as subcortical network activity and behavior, while its malfunctioning may lead to disorders, such as schizophrenia, major depression, or anxiety. Mouse MRR neurons are classically identified on the basis of their serotonin (5-HT), vesicular glutamate transporter type 3 (VGLUT3), and gamma-aminobutyric acid (GABA) contents; however, the exact cellular composition of MRR regarding transmitter phenotypes is still unknown. Using an unbiased stereological method, we found that in the MR, 8.5 % of the neurons were 5-HT, 26 % were VGLUT3, and 12.8 % were 5-HT and VGLUT3 positive; whereas 37.2 % of the neurons were GABAergic, and 14.4 % were triple negative. In the whole MRR, 2.1 % of the neurons were 5-HT, 7 % were VGLUT3, and 3.6 % were 5-HT and VGLUT3 positive; whereas 61 % of the neurons were GABAergic. Surprisingly, 25.4 % of the neurons were triple negative and were only positive for the neuronal marker NeuN. PET-1/ePET-Cre transgenic mouse lines are widely used to specifically manipulate only 5-HT containing neurons. Interestingly, however, using the ePET-Cre transgenic mice, we found that far more VGLUT3 positive cells expressed ePET than 5-HT positive cells, and about 38 % of the ePET cells contained only VGLUT3, while more than 30 % of 5-HT cells were ePET negative. These data should facilitate the reinterpretation of PET-1/ePET related data in the literature and the identification of the functional role of a putatively new type of triple-negative neuron in the MRR

    Divergent in vivo activity of non-serotonergic and serotonergic VGluT3-neurones in the median raphe region

    Get PDF
    KEY POINTS: *Median raphe is a key subcortical modulatory centre involved in several brain functions e.g. regulation of sleep-wake cycle, emotions and memory storage. *A large proportion of median raphe neurones are glutamatergic and implement a radically different mode of communication than serotonergic cells, but their in vivo activity is unknown. *We provide the first description of the in vivo, brain state-dependent firing properties of median raphe glutamatergic neurones identified by immunopositivity for the vesicular glutamate transporter type 3 (VGluT3) and serotonin (5HT). Glutamatergic populations (VGluT3+/5HT- and VGluT3+/5HT+)were compared to the purely serotonergic (VGluT3-/5HT+) and VGluT3-/5HT- neurones. *VGluT3+/5HT+ neurones fired similar to VGluT3-/5HT+ cells, whereas significantly diverged from the VGluT3+/5HT- population. Activity of the latter subgroup resembled the spiking of VGluT3-/5HT- cells, except their diverging response to sensory stimulation. *The VGluT3+ population of the median raphe may broadcast rapidly varying signals on top of a state-dependent, tonic modulation. ABSTRACT: Subcortical modulation is crucial for information processing in the cerebral cortex. Besides the canonical neuromodulators, glutamate has recently been identified as a key cotransmitter of numerous monoaminergic projections. In the median raphe, a pure glutamatergic neurone population projecting to limbic areas was also discovered with a possibly novel, yet undetermined function. Here, we report the first functional description of the vesicular glutamate transporter type 3 (VGluT3)-expressing median raphe neurones. Since there is no appropriate genetic marker for the separation of serotonergic (5HT+) and non-serotonergic (5HT-) VGluT3+ neurones, we utilised immunohistochemistry after recording and juxtacellular labelling in anaesthetised rats. VGluT3+/5HT- neurones fired faster, more variably and were permanently activated during sensory stimulation, as opposed to the transient response of the slow firing VGluT3-/5HT+ subgroup. VGluT3+/5HT- cells were also more active during hippocampal theta. In addition, the VGluT3-/5HT- population - putative GABAergic cells - resembled the firing of VGluT3+/5HT- neurones, but without significant reaction to the sensory stimulus. Interestingly, the VGluT3+/5HT+ group - spiking slower than the VGluT3+/5HT- population - exhibited a mixed response i.e. the initial transient activation was followed by sustained elevation of firing. Phase coupling to hippocampal and prefrontal slow oscillations was found in VGluT3+/5HT- neurones, also differentiating them from the VGluT3+/5HT+ subpopulation. Taken together, glutamatergic neurones in the median raphe may implement multiple, highly divergent forms of modulation in parallel: a slow, tonic mode interrupted by sensory-evoked rapid transients and a fast one, capable of conveying complex patterns influenced by sensory inputs. This article is protected by copyright. All rights reserved

    Co-transmission of acetylcholine and GABA regulates hippocampal states

    Get PDF
    The basal forebrain cholinergic system is widely assumed to control cortical functions via non-synaptic transmission of a single neurotransmitter. Yet, we find that mouse hippocampal cholinergic terminals invariably establish GABAergic synapses, and their cholinergic vesicles dock at those synapses only. We demonstrate that these synapses do not co-release but co-transmit GABA and acetylcholine via different vesicles, whose release is triggered by distinct calcium channels. This co-transmission evokes composite postsynaptic potentials, which are mutually cross-regulated by presynaptic autoreceptors. Although postsynaptic cholinergic receptor distribution cannot be investigated, their response latencies suggest a focal, intra- and/or peri-synaptic localisation, while GABAA receptors are detected intra-synaptically. The GABAergic component alone effectively suppresses hippocampal sharp wave-ripples and epileptiform activity. Therefore, the differentially regulated GABAergic and cholinergic co-transmission suggests a hitherto unrecognised level of control over cortical states. This novel model of hippocampal cholinergic neurotransmission may lead to alternative pharmacotherapies after cholinergic deinnervation seen in neurodegenerative disorders

    Differential Roles of the Two Raphe Nuclei in Amiable Social Behavior and Aggression – An Optogenetic Study

    Get PDF
    Serotonergic mechanisms hosted by raphe nuclei have important roles in affiliative and agonistic behaviors but the separate roles of the two nuclei are poorly understood. Here we studied the roles of the dorsal (DR) and median raphe region (MRR) in aggression by optogenetically stimulating the two nuclei. Mice received three 3 min-long stimulations, which were separated by non-stimulation periods of 3 min. The stimulation of the MRR decreased aggression in a phasic-like manner. Effects were rapidly expressed during stimulations, and vanished similarly fast when stimulations were halted. No carryover effects were observed in the subsequent three trials performed at 2-day intervals. No effects on social behaviors were observed. By contrast, DR stimulation rapidly and tonically promoted social behaviors: effects were present during both the stimulation and non-stimulation periods of intermittent stimulations. Aggressive behaviors were marginally diminished by acute DR stimulations, but repeated stimulations administered over 8 days considerably decreased aggression even in the absence of concurrent stimulations, indicating the emergence of carryover effects. No such effects were observed in the case of social behaviors. We also investigated stimulation-induced neurotransmitter release in the prefrontal cortex, a major site of aggression control. MRR stimulation rapidly but transiently increased serotonin release, and induced a lasting increase in glutamate levels. DR stimulation had no effect on glutamate, but elicited a lasting increase of serotonin release. Prefrontal serotonin levels remained elevated for at least 2 h subsequent to DR stimulations. The stimulation of both nuclei increased GABA release rapidly and transiently. Thus, differential behavioral effects of the two raphe nuclei were associated with differences in their neurotransmission profiles. These findings reveal a surprisingly strong behavioral task division between the two raphe nuclei, which was associated with a nucleus-specific neurotransmitter release in the prefrontal cortex
    corecore