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Abstract 

Microglia are the primary immune cells of the central nervous system. However, recent data indicate 

that microglia also contribute to diverse physiological and pathophysiological processes that extend 

beyond immune-related functions and there is a growing interest to understand the mechanisms 

through which microglia interact with other cells in the brain. In particular, the molecular processes 

that contribute to microglia-neuron communication in the healthy brain and their role in common 

brain diseases have been intensively studied during the last decade. In line with this, fate-mapping 

studies, genetic models and novel pharmacological approaches have revealed the origin of microglial 

progenitors, demonstrated the role of self-maintaining microglial populations during brain 

development or in adulthood, and identified the unexpectedly long lifespan of microglia that may 

profoundly change our view about senescence and age-related human diseases. Despite the 

exponentially increasing knowledge about microglia, the role of these cells in health and disease is 

still extremely controversial and the precise molecular targets for intervention are not well defined. 

This is in part due to the lack of microglia-specific manipulation approaches until very recently and to 

the high level of complexity of the interactions between microglia and other cells in the brain that 

occur at different temporal and spatial scales. In this review, we briefly summarize the known 

physiological roles of microglia-neuron interactions in brain homeostasis and attempt to outline 

some major directions and challenges of future microglia research. 
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Introduction 

To understand the physiology and diseases of the nervous system, the great majority of studies have 

focused on neuronal functions and interactions for several decades. However, recent research has 

highlighted the crucial role for glial cells in the maintenance of neuronal integrity from development 

to aging, whilst the contribution of glial function (or dysfunction) to common diseases of the brain 

has become increasingly accepted. The recognition that microglia are not only the main 

immunocompetent cells of the brain but represent a multifunctional and essential element of the 

mammalian nervous system with tempting opportunities for cell-specific manipulation has opened 

new avenues in neuroscience research. Given the emerging role of microglia in diverse physiological 

and pathophysiological processes, understanding microglial function is now considered as one of the 

most interesting questions for the upcoming years in neuroscience (Südhof, 2017). Recent 

technological advances now allow some forms of microglia-specific manipulation, which used to be 

extremely challenging due to the lack of microglia-specific markers that discriminate them from 

other tissue macrophages and because self-maintaining microglia populations are mostly protected 

by the blood brain barrier, making targeted pharmacological manipulation difficult. Single-cell 

transcriptomic- and fate-mapping studies shed light on the origin of microglia from primitive yolk sac 

macrophages and on their remarkable adaptation to the nervous tissue during early brain 

development (Ginhoux et al., 2010; Kierdorf et al., 2013). These studies have also revealed that 

microglial phenotypes appear to be largely influenced by the brain microenvironment, including the 

region-specific expression of microglial genes as well as the marked changes that occur in microglial 

transcriptomes by age in adults (De Biase et al., 2017; Olah et al., 2018). Nevertheless, in spite of the 

recent revolution in transcriptomics, genomics and modern microscopy technologies allowing the 

investigation of microglial function at different temporal and spatial scales in health and disease, 

several important questions remained unanswered. In particular, the mechanisms through which 

microglial actions may influence the maintenance, functioning and dysfunction of neurons from 
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individual cells to large networks and how exactly these processes could contribute to common 

human diseases, are far from being understood. 

 

Evolutionary role of glia – insights into the possible origin of microglia-neuron interactions 

Due to the high degree of specialization, complexity and their substantial isolation from the immune 

system and the systemic circulation, neuronal circuits in the central nervous system require 

continuous support from neuroglial cells. These cells maintain homeostasis by aiding the growth and 

re-structuring of neuronal processes, myelinate axons, maintain metabolic balance, adjust brain 

perfusion to local demand, and eliminate cell debris and non-required synapses to support the 

normal functioning of complex neuronal networks (Araque and Navarrete, 2010; Attwell et al., 2010; 

Jäkel and Dimou, 2017). The evolution of glial cells has been associated with their specialization and 

an increasing glia to neuron ratio, which coincided with the growing complexity of the nervous 

system, particularly, the brain (Reichenbach, 1989). Primordial glial cells appeared early in evolution. 

Proto-astrocytes provided metabolic support to neurons (Bacaj et al., 2008), whilst the formation of 

the blood-brain barrier (BBB) by astrocytes isolated the nervous tissue from the rest of the body 

(Obermeier et al., 2016). At a later stage of evolution, formation of the BBB emerged as a major 

function of endothelial cells (Abbott, 2005), whereas astroglial BBB is present in most invertebrates 

including crustaceans, insects and cephalopods (Abbott and Pichon, 1987). While vertebrates 

possess a well-developed tight BBB, some vestiges of primitive glial barriers remain in the 

mammalian CNS in regions lacking vascular BBB such as at the areas of the choroid plexus, pituicytes 

in the hypothalamic–hypophyseal system or the circumventricular organs (Obermeier et al., 2016), 

which are also sites known for intense neuroendocrine and neuroimmune interactions between the 

periphery and the brain. The increase in the size of the organisms required a faster communication 

between the periphery and the central nervous system. The appearance of oligodendrocytes and 

Schwann cells provided higher velocity of impulse conduction through myelination in ancestral 
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invertebrates. Evolutionary emergence of microglia was linked with the appearance of compact 

neuronal masses and the increased demand of specialized phagocytic and immune functions, 

including mechanisms of neural protection (Sherwood et al., 2006; Mota and Herculano-Houzel, 

2014). In fact, microglia-like cells, which can be labelled by weak silver carbonate, a classical stain for 

vertebrate microglia, contribute to the repair of nerve cells in invertebrates (Morgese et al., 1983). 

In the injured leech nervous system, small amoeboid microglial cells migrate to the lesion site and 

display phagocytic activity (Morgese et al., 1983), produce antimicrobial peptides in response to 

infectious attack (Schikorski et al., 2008) and control regenerative processes (Napoli and Neumann, 

2010). Microglial cells with migratory activity have also been described in snails and insects (Sonetti 

et al., 1994). Thus, the open circulatory system of invertebrates lent itself to the origin of 

neuroimmune cooperative events, whereby macrophage-like immune cells gained the capabilities 

for penetration and residence within “privileged” neuronal compartments (Stefano and Krearn, 

2015). 

From the neuro-immune interactions’ point of view, a large set of evolutionary conserved molecules 

are shared by the immune and the nervous systems including complex signalling systems with 

overlapping ligands and receptors (Kioussis and Pachnis, 2009). In particular, various 

macrophage/microglial-derived secretory products are capable of altering neuronal activity, which is 

associated with the release of neuron-derived mediators that can shape immune cell function. For 

example, interleukin-1β (IL-1β) released by microglia/macrophages alters neuronal activity and the 

release of dopamine and norepinephrine, whilst the functional involvement of opioid and 

monoaminergic mechanisms in regulation of cytokine production has been widely documented 

(Elenkov et al., 2000; Finley et al., 2008). Both IL-1β and monoamines are produced in response to 

neural trauma and circulating IL-1β and norepinephrine exert multiple effects on different cells and 

organs in the body, including the vasculature, inflammatory cells and neurons. Many of these shared 

signalling mechanisms are functionally linked with diverse forms of injury or neuronal death in 

mammals or the development of neurodegenerative- and psychiatric diseases in humans (Elenkov et 
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al., 2000; Allan et al., 2005; Denes et al., 2011; Mélik Parsadaniantz et al., 2015; Stefano and Krearn, 

2015). Some of these signalling pathways, have been observed in invertebrates and vertebrates 

during 500 million years of evolution, such as iNOS (Peruzzi et al., 2004), anandamide (Stefano et al., 

1996) or 17β-estradiol (Stefano et al., 2003). Throughout this evolutionary process, the complexity of 

neuronal networks grew in an astonishing amount. Knowing this, it is not surprising, that along this 

shared journey microglia stepped up from the “silent guardian” bystander position of early 

parenchymal macrophages, and became highly complex homeostatic cells of the brain. 

 

Evidence for the role of microglia-neuron interactions during brain development 

Microglial cells are of myeloid origin and derive from progenitors generated in the yolk sac. Unlike 

ectodermal macroglial cells that populate the CNS after the appearance of neurons, microglial 

progenitors are already present around the neural tube as early as E9 in mice, and from the 5th 

gestational week in humans (Ginhoux et al., 2010; Verney et al., 2010). Thus, microglia are in ideal 

position to regulate neuro-, glio- and angiogenesis. After their entry, microglia migrate tangentially 

and then radially in the developing nerve tissue and undergo intense proliferation before reaching a 

close to the final density in the early postnatal period in mice (Navascués et al., 2000; Monier et al., 

2007; Verney et al., 2010; Nikodemova et al., 2015). Then, the microglial population is maintained by 

balanced proliferation and apoptosis throughout life, without the contribution of circulating immune 

cells (Askew et al., 2017; Huang et al., 2018). Parenchymal microglia reside in the CNS together with 

self-maintaining populations of perivascular and meningeal macrophages, as well as choroid plexus 

macrophages that are replaced by blood-borne cells to some extent (Goldmann et al., 2016; Mrdjen 

et al., 2018). Due to the partially common origin of microglia and some other tissue macrophages, it 

is difficult to define the precise contribution of microglia to CNS development. Accumulating 

evidence from fate-mapping and genomic studies indicates deficient brain development to various 

degrees when microglial functionality is impaired. In mice lacking Pu.1, a regulator of myeloid 
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differentiation, monocytes and macrophages are absent throughout the body, including all CNS 

macrophages and microglia (Schulz et al., 2012; Kierdorf et al., 2013; Goldmann et al., 2016). Pu.1-

null mice are born with severe immune deficits and die within a short period of time (McKercher et 

al., 1996). However, they show decreased neuronal proliferation rate and lower macrogliogenesis, 

both of which can be rescued with exogenous microglia (Antony et al., 2011). CSF-1 receptor (CSF1R) 

is solely expressed by microglia in the CNS (Erblich et al., 2011) and CSF1R-mediated signalling is 

required for the maintenance of microglial populations (Gómez-Nicola et al., 2013; Olmos-Alonso et 

al., 2016). Models targeting CSF1 or CSF1R impact on numbers and functionality of microglia, 

circulating- or tissue macrophages to different extent. CSF1R null mutations completely eliminate 

microglia, whereas CSF1 elimination causes only a reduction in microglial numbers (Ginhoux et al., 

2010; Erblich et al., 2011). Mice with disrupted CSF1-CSF1R axis suffer from multiple morbidities, 

with pronounced alterations in the CNS: CSF1R deficient mice have smaller brains, altered density of 

neurons and macroglial cells in the cortex, atrophy in the olfactory bulb, smaller ventricles and 

disturbed connection of hemispheres (Dai et al., 2002; Erblich et al., 2011; Nandi et al., 2012). 

Another ligand of CSF1R is IL-34, the absence of which also results in decreased microglial population 

in a region-specific manner (Greter et al., 2012; Wang et al., 2012). Except for microglia and 

Langerhans cells, IL-34 deletion seems to have a minor effect on the number of other tissue 

macrophages and does not result in as severe phenotypes as seen after CSF1R deletion.  

Importantly, the developmental deficits associated with the absence or dysfunction of microglia are 

probably due to complex interactions between microglia, endothelial cells, astrocytes, neurons and 

tentatively other cell types. Deficiency of the TGFβ1/TGFbR2 pathway in microglia or disrupted PU.1 

or SDF-1 signalling in microglia/macrophages is associated with impaired embryonic angiogenesis 

and BBB formation (Fantin et al., 2010; Ginhoux et al., 2010; Butovsky et al., 2014), which also have a 

major impact on the formation of neuronal networks in the brain and profoundly alter outcome 

after brain injury. Microglia also contribute to embryonic neurogenesis (Walton et al., 2006; 

Cunningham et al., 2013), to the migration and differentiation of neural precursor cells (Aarum et al., 
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2003; Antony et al., 2011), promote neuronal survival (Morgan et al., 2004; Ueno et al., 2013), axon 

growth (Pont-Lezica et al., 2014; Squarzoni et al., 2014), synapse formation (Lim et al., 2013; 

Parkhurst et al., 2013; Miyamoto et al., 2016), activity-dependent synapse elimination (Schafer et al., 

2012), synapse and spine remodelling (Lim et al., 2013; Parkhurst et al., 2013; Weinhard et al., 

2018), positioning of interneurons in the forebrain (Squarzoni et al., 2014) and the formation of 

cortical layers (Ueno et al., 2013). Developmental synapse elimination by microglia is critical for 

proper brain maturation (Paolicelli et al., 2011). The absence or malfunction of microglia during 

development results in dysfunctional neuronal networks, defasciculation of axons, altered spine 

density and synapse numbers (Erblich et al., 2011; Paolicelli et al., 2011; Nandi et al., 2012; Pont-

Lezica et al., 2014; Zhan et al., 2014; Miyamoto et al., 2016). The role of microglia during brain 

development and after neonatal brain injury is discussed in detail in a recent review article (Mallard 

et al., 2018).   

 

Microglia-neuron interactions from synapses to neuronal networks 

In spite of the large number of studies investigating basic cellular and molecular mechanisms of 

microglia-neuron interactions, knowledge about the precise sites of action and the integration of 

signals generated at the level of individual synapses or complex neuronal networks is limited. 

However, evidence from different studies indicates that although microglia are seemingly 

dispensable for the normal functioning of basic neurophysiological processes in the adult brain, the 

absence or dysfunction of microglia has a significant impact on activity-dependent physiological 

processes such as memory formation, similarly to that seen after brain injury or neurodegeneration 

(Perry et al., 2010; Parkhurst et al., 2013; Salter and Stevens, 2017). Selective, temporal elimination 

of microglia during adulthood by the CSF1 receptor (CSF1R) antagonists PLX3397 or PLX5622 is not 

associated with illness or robust behavioural alterations, it has no major impact on the number and 

functioning of neurons, endothelial cells, pericytes or glial cells and does not compromise the 
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integrity of the BBB (Elmore et al., 2014; Szalay et al., 2016; Huang et al., 2018). However, to 

understand the role of microglia in the adult brain under physiological conditions, further depletion- 

and selective microglia-manipulation studies are needed. For example, it is currently unclear, how 

long-term (several months long) elimination of microglia would influence physiological processes, 

aging or complex behavioural paradigms associated with learning, adaptation or formation of long-

term memory. Furthermore, after experimental stroke and other forms of acute/subacute neuronal 

injury induced by diphtheria toxin in CaM/Tet-DTA mice or by 1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine (MPTP) treatment in a mouse PD model, neuronal loss was markedly augmented 

(Rice et al., 2015; Szalay et al., 2016; Yang et al., 2018). On the other hand, improved cognitive 

performance, reduced neuronal loss and improved synaptic reorganisation have been reported 

following cranial irradiation, in mouse models of Alzheimer’s disease or during recovery from 

diphtheria toxin-induced acute neuronal injury in the absence of functional microglia (Dagher et al., 

2015; Rice et al., 2015; Acharya et al., 2016; Spangenberg et al., 2016). Markedly different outcomes 

after different forms of brain injury in microglia-depleted mice suggest that an in depth mechanistic 

insight into the main processes regulating microglia-neuron communication at different temporal 

and spatial scales will be essential to identify the most appropriate therapeutic targets in different 

forms of brain injury and neurodegeneration. 

 

Microglia-neuron interactions at synaptic/dendritic/axonal level 

Perhaps the best documented microglia-neuron interactions take place at the level of synapses. 

During development, vast amounts of synapses are generated during an intensive period of 

synaptogenesis. Following this, the refinement of neuronal networks is brought about by synaptic 

pruning, a process governing activity-dependent elimination of redundant synapses, in which 

complement-dependent microglial phagocytosis is considered to play a key role (Schafer et al., 2012; 

Jung and Chung, 2018). Unwanted developing synapses in the reticulogeniculate system are tagged 
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with the complement protein C1q (Stevens et al., 2007) and phagocytosed by microglia (Schafer et 

al., 2012). C1q-knockout mice have been shown to have an increased number of axonal boutons of 

pyramidal cells in cortical layer V and these animals were prone to epileptogenesis (Chu et al., 2010). 

The fractalkine (CX3CL1) - fractalkine receptor (CX3CR1) pathway has also been implicated in 

synaptic pruning (Kettenmann et al., 2013). CX3CR1-deficiency leads to a reduction of microglial 

surveillance and impaired development of hippocampal and thalamocortical synaptic circuitries 

(Hoshiko et al., 2012; Pagani et al., 2015). Microglial phagocytosis and interactions with neuronal 

elements also determine the fate of individual synapses in the adult brain (Tremblay et al., 2010). 

Furthermore, the dysregulation of these actions is thought to contribute to synapse loss in 

neurodegenerative processes, such as seen in Alzheimer’s disease (Hong et al., 2016). Synapse 

elimination in the neuropil can be distinguished from a related process, synaptic stripping, which is 

characterized by the removal of somatic synapses from neuronal perikarya (Trapp et al., 2007; 

Yamada et al., 2008). Recently, it has been demonstrated that synapse elimination is the 

consequence of microglial phagocytosis or trogocytosis of presynaptic elements (Weinhard et al., 

2018). Interestingly, microglia are not only responsible for the elimination of synapses, but microglial 

contacts have also been shown to induce synapse formation in the developing somatosensory 

cortex, while genetic ablation of microglia altered spine density, reduced functional excitatory 

synapses and the relative connectivity (Bessis et al., 2007; Miyamoto et al., 2016). Interleukin-10, 

which is produced by both microglia and astrocytes in the brain (Lobo-Silva et al., 2016) also appears 

to be involved in microglia-dependent synaptogenesis (Lim et al., 2013). Microglia also regulate 

synaptic plasticity (Rogers et al., 2011; Pascual et al., 2012; Pfeiffer et al., 2016; Sipe et al., 2016). 

The molecular mechanisms involved in this process include the modulation of the NMDA receptor 

glycine binding site (Hayashi et al., 2006), signalling by fractalkine through its receptor (Paolicelli et 

al., 2011; Rogers et al., 2011; Hoshiko et al., 2012), modulation of Cl- gradient in neurons through 

microglial BDNF release (Coull et al., 2005), purinergic signalling (Tsuda et al., 2010) and glial TNF-α 

release (Stellwagen and Malenka, 2006) among others. During hippocampal LTP, microglia alter their 
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morphological dynamics by increasing the number of their processes and by prolonging their 

physical contacts with dendritic spines, and these effects are absent in the presence of an NMDA 

receptor antagonist (Pfeiffer et al., 2016). Furthermore, after transient cerebral ischemia, the 

duration of microglia–synapse contacts are markedly prolonged (ca. 1 h) and are occasionally 

followed by the disappearance of the presynaptic bouton (Wake et al., 2009). Synaptic alterations 

have also been shown to occur in response to the loss-of-function mutation of DAP12, a 

transmembrane protein associated with microglial TREM2, leading to enhanced hippocampal LTP 

and changes in glutamatergic transmission (Roumier et al., 2004, 2008). Interestingly, mutations in 

the genes encoding microglial DAP12 or TREM2 are responsible for the development of Nasu-Hakola 

disease, which is characterized by progressive presenile dementia associated with bone cysts 

(Hakola and Iivanainen, 1973; Paloneva et al., 2000). Microglia also promote the formation of proper 

functioning networks by gathering around growing axons, and also contribute to fiber reorganization 

during development (Dalmau et al., 1998). It has been described that microglia accumulate at 

decision points along axonal tracts, and modulate axonal growth and pathfinding with the CX3CL1-

CX3CR1-, complement- and DAP12 pathways involved (Squarzoni et al., 2014). Other studies have 

confirmed that the proper formation of corpus callosum and axonal fasciculation depend on the 

presence of microglia (Pont-Lezica et al., 2014). Overall, proper microglial function together with 

both direct and indirect interactions with different neuronal subcompartments are instrumental for 

appropriate development, and also contribute to homeostasis of neuronal networks in adults.  

 

Microglia-neuron interactions at the cellular level 

Microglia play a major role in patterning the CNS during development by regulating neuronal 

proliferation and survival (Morgan et al., 2004; Ueno et al., 2013). Evidence from many different 

brain regions show a global ability for microglia to instruct programmed cell death (reviewed in 

Bilimoria and Stevens, 2015). Various signalling systems have been functionally associated with 
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processes: for example, neuronal-derived lysophosphatidylcholine (Lauber et al., 2003), DNA (Cox et 

al., 2015) or nucleotides (Elliott et al., 2009) can serve as “find me” signals for microglia, while 

fractalkine (Truman et al., 2008) and sphingosine-1-phosphate (Gude et al., 2008) also attract 

microglia/macrophages to dying cells. Outcomes in this context after the manipulation of microglial 

activity and responses are also largely model-dependent and complex. For example, the absence of 

microglial CSF1R can lead to increased neuronal density (Erblich et al., 2011), while others have 

found increased number of neurons undergoing apoptosis in CX3CR1 KO mice (Ueno et al., 2013), 

suggesting the importance of several different microglial signalling pathways in neuronal 

proliferation and survival. Meanwhile, microglia are also key players in the migration and 

differentiation of neural precursor cells via releasing soluble factors (Aarum et al., 2003). Altogether 

these data suggest a balancing role of microglia in the brain, which appears to be increasingly 

important during the early stages of brain development. 

The hippocampal formation is indispensable for learning and memory, whilst neurogenesis occurs 

during adulthood in the dentate gyrus. Microglia-mediated actions contribute to both learning and 

neurogenesis. The absence of CX3CR1 leads to reduced adult neurogenesis in the dentate gyrus (De 

Lucia et al., 2016; Sellner et al., 2016), while exogenous fractalkine reverts age-dependent decrease 

of hippocampal neurogenesis (Bachstetter et al., 2011). Disrupted CX3CR1 signalling results in 

deficits in adult neurogenesis-linked functions, like spatial and motor learning (Rogers et al., 2011), 

or exercise induced increase in neuronal density (Vukovic et al., 2012). The fact that the absence of 

fractalkine did not reproduce the phenotype of CX3CR1 KO animals (Sellner et al., 2016) proposes 

the role of other ligands of CX3CR1, possibly IL-34 (Wang et al., 2012). Microglial IGF-1 also seems to 

promote an increase in neuronal density of the dentate gyrus, suggesting the role of this growth 

factor in neurogenesis and neuronal survival (Kohman et al., 2012; Ueno et al., 2013). The 

integration of newborn cells into functioning circuits is also supported by microglia, as they clear the 

region from the residues of apoptotic cells (Sierra et al., 2010). The CD200-CD200R signalling axis 

with CD200 expressed on neurons and its receptor on microglia, also contributes to the regulation of 



13 
 

microglial activity and their interactions with neurons. Retinal microglia in CD200 KO mice have been 

shown to display decreased ramification and increased levels of CD11b and CD45, which is 

associated with augmented inflammatory responses in different experimental models of 

neuropathology (reviewed extensively in Walker and Lue, 2013). 

Microglial processes have been reported to contact different areas of neurons during surveillance 

activity (Nimmerjahn et al., 2005), while in zebrafish larvae it was proposed that contacts with 

perikarya were established in more active neurons resulting in the decay of their activity (Li et al., 

2012). The activity-dependence of somatic microglia contacts was further strengthened by 

observations under hypoxic circumstances, when microglial processes gathered around neurons 

with elevated intracellular calcium levels (Szalay et al., 2016). Furthermore, there is also evidence for 

a direct contact between microglia and axon initial segment of cortical neurons in different species 

through which microglia exert a neuroprotective effect following neuronal hyperactivity (Baalman et 

al., 2015; Kato et al., 2016). The molecular mechanisms involved in microglia-mediated control of 

neuronal activity are not well understood. Neuronal ATP and glutamate have been shown to attract 

microglial processes (Kato et al., 2016) that may allow microglia to sense changes in neuronal 

activity. ATP during microglia-neuron interaction has been shown to be released by pannexin 

hemichannels or by via volume-activated anion channels (Dahl, 2015; Kato et al., 2016). However, 

recent data show that no ambient purinergic signalling is required to maintain microglial ramification 

and surveillance whilst the role of P2Y12 receptors may also be dispensable for these actions (Madry 

et al., 2018a, 2018b). GABA is also known to influence microglial process motility, and selectively 

blocking GABA-ergic neurotransmission increases the volume of tissue sampled by individual 

microglial cells (Nimmerjahn et al., 2005). In turn, mediators released from microglia including 

proinflammatory cytokines such as IL-1β and TNFα, have been shown to shape neuronal activity and 

also markedly contribute to neuronal injury (Coull et al., 2005; Nygård et al., 2009; Hewett et al., 

2012; Pascual et al., 2012; Béchade et al., 2013; Kato et al., 2016; Cantaut-Belarif et al., 2017). In 

spite of the extensive knowledge available about the molecular pathways regulating microglia-
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neuron communication (see also Eyo and Wu, 2013; Tsuda and Inoue, 2016 for further details), how 

these different signals are integrated in individual microglial cells that contact 5-12 neurons in 

average and nearby capillaries at the same time (Szalay et al., 2016) and at the level of large 

neuronal networks, is currently unclear (See also Box1.). 

 

Microglia-neuron interactions at the network level 

The interactions between microglia and neurons are likely to be present at different organizational 

levels. Unlike astrocytes, microglial cells are not interconnected via gap junctions in mammals with 

individual microglia occupying a given volume of tissue in the brain (Nimmerjahn et al., 2005). It is 

currently not well understood whether and how coordinated actions of several microglial cells could 

shape the connectivity or activity of complex neuronal networks. The network-level manifestations 

of these interplays are emerging as the complex sum of direct cell-to-cell interactions supplemented 

by more diffuse paracrine or volume-transmission effects. Although the clear dissection between 

cellular- and network-level mechanisms of microglia-neuron interactions is currently not possible, 

increasing number of studies has provided evidence for the network-level effects of microglial 

functions within neuronal systems. Local hippocampal and whole-brain depletion of microglia led to 

decreased spatial learning performance (Torres et al., 2016), while the absence of microglia resulted 

in dysregulated neuronal network activity patterns in the injured brain (Szalay et al., 2016). fMRI 

measurements of CX3CR1-knockout mice revealed a decreased functional connectivity between 

prefrontal cortical and hippocampal areas (Zhan et al., 2014). Microglia-dependent BDNF-TrkB 

signalling controls overall neuronal excitability via the regulation of inhibitory transmission in 

neuronal networks(Tanaka et al., 1997; Frerking et al., 1998; Baldelli et al., 2005; reviewed 

extensively by Ferrini and De Koninck, 2013), while the absence of microglia or BDNF alone 

decreased learning coupled structural plasticity (Parkhurst et al., 2013). Neuroinflammation in 

general is thought to be involved in the generation of neuronal hyperexcitability (reviewed in 
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Vezzani and Viviani, 2015). Purinergic signalling, the glutamatergic pathway and Kv7/M-channels are 

also contributors to this process (Henshall and Engel, 2015; Tzour et al., 2017). Thus, these results 

highlight the potential importance of microglial functions in regulating higher-level properties of 

neuronal networks. Some important molecular pathways implicated in microglia-neuron interactions 

are summarized on Fig. 1. 

 

Multi-cellular interactions 

One major future challenge of microglia research is to resolve the mechanism of highly complex 

multi-level interactions, in which the communication among several different brain cell populations 

is integrated or summed to generate given physiological or pathophysiological readouts. Some of 

these complex multi-step interactions have already been identified. For example, the developing 

vasculature serves as a main support and provides critical guidance clues for the migration of 

GABAergic neurons (Won et al., 2013). Disturbances of microglial functions may lead to disrupted 

vasculature development, as microglial signals can trigger vessel sprouting (Rymo et al., 2011), and 

this way the proper migration and positioning of GABAergic neurons will be affected negatively. On 

the other hand, the direct trophic effects of microglia on GABAergic cells via the BDNF-TRKb axis 

provide another level of complexity during development (Baldelli et al., 2002; Mizoguchi et al., 

2003). The exact dissection of these parallel actions will require carefully designed experiments with 

multiple points of selective interventions. Another example for multi-step cellular interactions is 

astrocyte-microglia communication, which is evidenced by some interesting, but controversial 

findings. Activated microglia have been shown to induce the neurotoxic transformation of astrocytes 

(Liddelow et al., 2017), while others found that microglia can induce the transformation of 

astrocytes into a neuroprotective phenotype after brain injury (Shinozaki et al., 2017). The 

involvement of a purinergic-glutamatergic cascade between microglia, astrocytes and neurons has 

also been implicated (Tzour et al., 2017). Recently, astrocyte-derived interleukin-33 (IL-33) has been 
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described to play an important role in microglial synaptic pruning (Vainchtein et al., 2018). 

Furthermore, the instrumental role of microglial functions via their interactions with different cell 

types during development is also known (Mosser et al., 2017; Mallard et al., 2018), as discussed 

above. Thus, beyond the need to understand different intercellular interactions and the mechanisms 

involved, clues for the integration of complex signalling- and intercellular cascades will also be 

essential, in which systems biology approaches appear to be indispensable. Please note, that this 

section only aims to demonstrate that the effect of microglia-dependent actions on neurons may 

also be mediated via other cell types and not intended to give a comprehensive review of inter-glial 

interactions. 
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Fig1. Molecular pathways involved in microglia-neuron interactions. The schematic figure shows a 

simplified view of the main signalling pathways that are implicated in the bidirectional 

communication between microglia and neurons. The four main levels of interactions (Level of 

subcellullar domains, Cellular level, Network level and Multi-cellular interactions) follow a bottom-

up approach. Please note, that the pathways depicted on the figure are restricted to those discussed 

in the review (please refer to details in the text). Abbreviations: BDNF – brain derived neurotrophic 

factor, C1q – complement component 1q, C1qR – C1q-receptor, C3R – complement receptor 3, 

CD200 – cluster of differentiation 200, CD200R – CD200 receptor, CX3CR1 – C-X3-C-motif chemokine 

receptor, DAP12 – DNAX activation protein of 12kDa, IGF1 – insulin-like growth factor 1, IGF1R – 

IGF1 receptor, IL-1β – interleukin 1 beta, IL10 – interleukin-10, IL34 – -interleukin 34, Kv7/M – M-
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type potassium channel, NMDAR – N-methyl-D-aspartate receptor, TNFα – tumor necrosis factor 

alpha, TNFR – TNF receptor, TREM2 – Triggering receptor expressed on myeloid cells 2, TrkB – 

Tropomyosin receptor kinase B.  

 

Challenges and future directions of microglia research 

In this chapter, we aim to highlight a few research areas that may be important for a better 

understanding of the complex role of microglia in the CNS (summarized in Box 1.). Several additional 

important topics exist that have not been discussed herein due to space limitations. The 

investigation of steady-state microglia is hampered by the fact that microglia – by their very nature – 

rapidly respond to any disturbances of the brain microenvironment, which is a common confounder 

of any invasive method, surgical manipulation or treatment that disturbs brain homeostasis. Prompt 

microglial activation, changes in process motility and directed process recruitment are triggered by 

parenchymal injections, insertion of capillaries into the brain, or even by the preparation of cranial 

windows for in vivo imaging (Kozai et al., 2012; Eles et al., 2017). All these data highlight the 

importance of using non-invasive or minimally invasive methods when studying microglia in vivo. 

Good examples for these are the minimally invasive and/or chronic cranial window techniques with 

intact dura mater (Grutzendler et al., 2002; Davalos et al., 2005; Holtmaat et al., 2009, 2012; Szalay 

et al., 2016) as well as different skull clearing methods (Zhang et al., 2015; Steinzeig et al., 2017) 

widely used for in vivo two-photon imaging and other optical techniques. Models that allow 

prolonged imaging of microglial actions (beyond the assessment of process motility as a single 

readout) in response to non-invasive neuronal manipulation induced by chemogenetic approaches 

(e.g. Designer Receptors Exclusively Activated by Designer Drugs, DREADDs) or optogenetic 

stimulation would also greatly advance the knowledge of this field.  However, optogenetic and 

chemogenetic constructs used to induce depolarization or hyperpolarization in neurons will need to 

be fine-tuned to better reflect intracellular calcium dynamics and evoke physiological actions of 

microglia. 
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Another area, where microglia research is standing before a big leap forward is the use of specific, 

microglia-selective manipulations. So far one of the most straightforward and robust methods to 

investigate the involvement of microglia in specific physiological or pathophysiological processes has 

been the selective depletion of these cells with CSF1R antagonists (Rice et al., 2015; Acharya et al., 

2016). In the last couple of years, the field obtained critically important data with this method, some 

of these re-shaping our conceptual understanding of the role and nature of microglia (Szalay et al., 

2016; Huang et al., 2018). However, microglia depletion studies may not provide detailed 

information regarding the specific mechanisms, the molecular pathways or the additional regulatory 

factors involved. Long term genetic alteration of the microglial system – especially during brain 

development – can trigger compensatory mechanisms, resulting in phenotypes that are not solely 

attributable to the direct effects of microglial manipulations. Even during adulthood, temporal 

elimination of microglia may also induce compensatory actions in neurons, ranging from the level of 

synapses to complex neuronal networks, or influence other cell types, which should be taken into 

consideration for the interpretation of the results from these studies. This necessitates the use of 

more specific microglial interventions in future research, in addition to cell-specific depletion 

studies. Development of models to selectively induce or inhibit microglial activation in real time by 

genetic manipulation of microglia-specific proteins, selective inhibitors of microglia-specific 

signalling pathways and the selective chemogenetic and optogenetic control of microglial actions 

will also be of great importance.  

Several different molecular signalling pathways have been implicated in physiological neuron to 

microglia communication in recent years that were discussed in several excellent reviews in recent 

years (Kettenmann et al., 2013; Bilimoria and Stevens, 2015; Mosser et al., 2017; Salter and Stevens, 

2017; York et al., 2017; Mecca et al., 2018). However, this area still has many critical unanswered 

questions. It is well known, that microglia express a large variety of classical neurotransmitter 

receptors, several of which were described to be functional. For example, glutamate can act on 

microglial ionotropic and metabotropic receptors to modulate TNFα-release or regulate processes 



20 
 

linked to neurotoxicity/neuroprotection, respectively (Hagino et al., 2004; Taylor et al., 2005). 

GABAergic (Charles et al., 2003) and cholinergic (Shytle et al., 2004) signalling have also been shown 

to modulate cytokine release by microglia. Nevertheless, the exact role of neurotransmitter 

receptors and their regulation of microglial function are incompletely understood and the possibility 

of a direct synaptic input by neuronal axon terminals on microglia remains to be investigated. High-

resolution microscopy studies to reveal the precise localization of neurotransmitter receptors, 

transporters and other molecular elements on microglia in the context of their connection with 

neurons are currently lacking. These data together with functional studies would help to understand 

the direct and paracrine signalling mechanisms through which synaptic activity shapes microglial 

responses in health and disease.  

It is also vital to gain further mechanistic insight into the main pathways regulating microglia-neuron 

communication. At present, several experimental models implicate the functional role of microglia in 

the formation, functioning or dysfunction of neuronal networks, but the identity of the actual 

microglia-mediated effects is far from being understood. A typical example is the complex role of the 

fractalkine signalling pathway in health and disease. CX3CR1 KO mice have been shown to 

experience defective synaptic development and maturation in the hippocampus and the barrel 

cortex (Paolicelli et al., 2011; Hoshiko et al., 2012; Zhan et al., 2014), while other studies describe 

unaltered synaptic development and activity-dependent plasticity in the visual cortex in the absence 

of CX3CR1 (Lowery et al., 2017; Schecter et al., 2017). In line with this, CX3CR1-deficient microglia 

show increased or decreased level of proinflammatory cytokine production and altered phagocytic 

activity or contact with neurons in a model-dependent manner, whereas CX3CR1 KO mice display 

reduced neuronal death in response to acute brain injury with impaired outcomes in several models 

of neurodegeneration (Cardona et al., 2006; Denes et al., 2008; Ransohoff, 2016a). These 

controversies are likely to be due to differences in the experimental models used, the presence or 

absence of BBB injury, the time-scales of observation and the differences in disease pathophysiology 

among others, which will need to be investigated in future studies. 
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ATP and its derivatives are well-known chemoattractants and regulators of microglial motility mainly 

via P2Y12 receptors, whilst P2X7, P2X4 and other purinergic receptors regulate microglial cytokine 

production, migration and phagocytosis (Davalos et al., 2005; Haynes et al., 2006; Shieh et al., 2014; 

Fabbrizio et al., 2017; He et al., 2017; Suurväli et al., 2017). To date, the P2Y12 signalling pathway 

has mainly been implicated in responses of microglia to pathological changes (Inoue, 2002; Haynes 

et al., 2006; Tozaki-Saitoh et al., 2008; Gu et al., 2016; Tsuda and Inoue, 2016), and recent studies 

suggest that while microglial potassium fluxes – via the newly described two-pore domain THIK-1 

channel – play an important role in the regulation of physiological surveillance of microglia, 

purinergic signalling participates only in case of injury or distress (Madry et al., 2018a, 2018b). 

However, it is still unknown where the different motility-regulating signalling pathways intersect and 

how they influence each other in physiological and pathological states. Furthermore, since neurons 

can release ATP also during their basal activity (Ho et al., 2015; Menéndez-Méndez et al., 2017), 

purinergic signalling via P2Y12 receptors is essential for synaptic plasticity (Sipe et al., 2016) and 

microglial P2Y12 signal decreases during activation (Haynes et al., 2006), the role of purinergic 

signalling in physiological microglial functions cannot be ruled out and should be investigated in 

detail. 

Further on, the signals regulating the precise localization of microglia in the brain and their migration 

in response to injury are improperly defined. For example, motile microglial processes rarely contact 

processes of nearby microglia in the healthy brain, allowing individual microglia to occupy a given 

volume of brain tissue, whilst microglial cell bodies are largely localised and evenly distributed under 

physiological conditions (Nimmerjahn et al., 2005). The precise mechanisms through which 

microglial process dynamics is influenced by nearby microglial cells are presently unclear and 

warrant further investigation. However, repopulating microglia (upon the cessation of CSF1R 

blockade) migrate and proliferate in the uninjured brain parenchyma until the distribution of the 

cells becomes similar to that of naïve animals within a short period of time (Elmore et al., 2014; 

Huang et al., 2018). In line with this, tissue injury, cerebral ischemia, BBB breakdown and several 
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other processes induce the directed migration of microglia to areas of injury even from large 

distances. Thus, it is likely that the signalling mechanisms and interactions with the extracellular 

matrix and other cells regulating actions of microglia show subcellular heterogeneity, which remains 

to be understood. Furthermore, microglia display region-specific heterogeneity at the transcriptomic 

level in the brain (Doorn et al., 2015; De Biase et al., 2017) suggesting that the neurochemical 

phenotype and function of surrounding neurons shape microglial responses. 

Direct physical contact between microglia and neurons seems to play an important, but presently 

undefined role in several physiological and pathophysiological processes. Microglia contact several 

domains of the neuron, such as synapses, dendrites or axon initial segments (Nimmerjahn et al., 

2005; Wake et al., 2009; Tremblay et al., 2010; Baalman et al., 2015). However, the comprehensive 

mapping of domain-specific microglia-neuron interactions has not yet been performed. Additionally, 

the function of satellite microglia and their possible regulatory actions are also unknown. Fast and 

precise communication between different cellular components, together with the operation of 

localised regulatory mechanisms is a fundamental feature of neuronal networks. Obviously, the 

presence of paracrine effects, the relevance of “volume transmission” is not arguable, however, 

more and more signalling pathways – previously thought to operate only in a diffuse manner – have 

been shown to operate mainly in a fast, specific and localised manner. The ascending median raphe 

pathway, the cholinergic innervation of cortical areas and nitric oxide signalling are all good 

examples at the level of neuron-to-neuron interactions (Sarter et al., 2009; Varga et al., 2009; 

Garthwaite, 2016). These data suggest that the significance of direct and local mechanisms is still 

generally underestimated and highlight the importance of mapping direct microglia-neuron contacts 

and their functional contribution to the interactions between these cells.  

The bidirectional communication between microglia and neurons under physiological and 

pathophysiological conditions has been widely studied. Under physiological conditions, among many 

others, microglial BDNF, IL-1ẞ and TNFα have been shown to contribute to this dialogue. However, 

the exact signals triggering or blocking dendritic spine formation, synaptogenesis etc. at areas of 
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microglial contacts, or those regulating repolarization and soothing of hyperactive neurons following 

microglia process recruitment remain to be defined. In a similar line, it is currently unclear how 

changes in neuronal activity contribute to complement-mediated synapse elimination by microglia 

(Stevens et al., 2007; Schafer et al., 2012). Furthermore, our knowledge about the interactions 

between microglia and neuronal synapses is focused mainly on the glutamatergic contacts. Studies 

are already emerging showing microglial regulation of non-glutamatergic synapses (Chen et al., 

2014; Cantaut-Belarif et al., 2017; Um, 2017), but this area needs further research efforts. 

Aside from some specific areas including the subventricular zone, the dentate gyrus and the 

olfactory bulb, neurons are not able to renew themselves. Latest data further strengthen the view 

that neurogenesis plays a smaller role in memory formation and renewal of neuronal populations 

that assumed previously (Sorrells et al., 2018) and suggest that most of our neurons stay with us 

throughout our entire life (Farzanehfar, 2018). On the other hand, most cell types in the brain have 

been thought to have a much shorter lifespan and a relatively high turnover rate. Interestingly, 

recent studies described that individual microglia have an unexpectedly long life, and a lower 

turnover rate (Füger et al., 2017; Réu et al., 2017). These results propose an interesting direction for 

future research, and change our conceptual understanding of microglial functions both in 

physiological states, and – perhaps more importantly – in the context of aging and 

neurodegeneration (Olah et al., 2018; Santoro et al., 2018). 

The long-held view of microglial states (i.e.: “resting” and “activated”) is getting more and 

more outdated and should rather be replaced by a more integrative paradigm based on results from 

numerous imaging, transcriptomic and functional studies. The original concept led to the false and 

oversimplified view suggesting that in physiological state the only function of microglia is to wait for 

an insult as opposed to recent studies demonstrating constant surveillance activity and the 

fundamental homeostatic and neuroprotective roles of microglia (Kierdorf and Prinz, 2017). This 

area needs a lot of future work, but a new paradigm is clearly on the horizon.  Similarly, the concept 

of microglial polarization and the existence of M1 and M2 states appear to be replaced by novel 
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concepts. Whilst microglial transcriptomes differ unambiguously from that of peripheral 

macrophages, single-cell RNA-seq studies have demonstrated that canonical markers of divergent 

polarization states were highly coexpressed in single cells (Ransohoff, 2016b). This is also supported 

by the findings that regional and age-dependent microglial profiles do not support the existence of 

either M1 or M2 transcriptomes under physiological or stress conditions (Grabert et al., 2016; 

Ransohoff, 2016b). This certainly raises important issues in the context of the plasticity of individual 

microglial cells with important implications to microglia-neuron interactions. 

In the last decades, the rising frequency of neurological disorders imposes an extreme socio-

economic burden on society (Pritchard et al., 2013), which is accompanied by the very limited 

success of clinical trials concerning new treatments for brain disorders like stroke or Alzheimer’s 

disease (Hoyte et al., 2004; Anderson et al., 2017). The reasons for failure are likely to include the 

long-standing “neuron-centric” view of brain research (Verkhratsky et al., 2016). Throughout recent 

years the basic contribution of neuroinflammation to brain disorders has been confirmed, and 

microglia also stepped up as “central players” in neurodegenerative processes (Ransohoff, 2016a; 

Ramirez et al., 2017; Salter and Stevens, 2017). Future research should acknowledge the complexity 

of brain, and conceptually integrate all cellular elements in an unbiased manner (Masgrau et al., 

2017). Among these, microglia-specific processes are clearly emerging as so-far unexplored targets 

for therapeutic interventions, urging for multiplied efforts in microglia-related translational research. 

 

Conclusions 

In this review, we have attempted to give a short and unbiased summary of microglia-neuron 

interaction research, and perhaps more importantly – besides the snapshot depicting the current 

status of the field – tried to provide an actual “shopping list” of the major questions and possible 

future directions of research. As usual, it is possible that some of the research frontlines identified 

will eventually turn out to be dead ends, and presently unexpected novel concepts will revolutionize 
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microglia research. Nevertheless, this field will give an inexhaustible source for investigation in the 

following years, presumably with important translational outputs.   

 

Box 1. – Considerations when studying microglia-neuron interactions 

Technological and experimental objectives 

 Development and use of non-invasive models and imaging tools to study microglial 
actions under physiological and pathophysiological conditions in vivo 

 Identifying novel markers of microglia for cell-specific manipulation 

 Non-invasive and selective microglia manipulation techniques with emphasis on real-time 
manipulation 

 Novel imaging, molecular anatomy and systems biology approaches to understand 
microglial function in health and disease 

 Validation of microglia-manipulation approaches and disease models in a translational 
context 
 

Some important research directions 

 Revealing microglial transcriptome, translatome, proteome and secretome, and their 
changes during development, adulthood, aging and disease 

 Unveiling molecular determinants of direct neuron-microglia communication 

 Exploring microglial influence on neuronal activity 

 Revealing the role of microglial neurotransmitter receptors in microglial activity and 
responses 

 Understanding the mechanisms of complement-mediated synapse elimination and 
identification of further molecular pathways involved 

 Understanding purinergic signalling in health and disease 

 Identification of the mechanisms mediating regional specificity of microglia in the brain 

 Understanding the role of microglial function during development and the impact of 
early-life events on lasting pathophysiological alterations 

 Studying innate immune memory and epigenetic changes in microglia to understand the 
impact of central and systemic inflammatory responses on the brain 

 Better understanding of the cooperation between glial cells 

 The significance of long living microglia and their role in neuronal senescence and aging 

 Exploring changes in neuron-microglia interactions in pathologic states 

 Working towards effective utilization of microglia research discoveries in medicine 
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