842 research outputs found
Katabolismus des Molybdän-Cofaktors - Identifikation der endogenen Thiopterin-Methyltransferase
MARVEL: measured active rotational-vibrational energy levels
An algorithm is proposed, based principally on an earlier proposition of Flaud and co-workers [Mol. Phys. 32 (1976) 499], that inverts the information contained in uniquely assigned experimental rotational-vibrational transitions in order to obtain measured active rotational-vibrational energy levels (MARVEL). The procedure starts with collecting, critically evaluating, selecting, and compiling all available measured transitions, including assignments and uncertainties, into a single database. Then, spectroscopic networks (SN) are determined which contain all interconnecting rotational-vibrational energy levels supported by the grand database of the selected transitions. Adjustment of the uncertainties of the lines is performed next, with the help of a robust weighting strategy, until a self-consistent set of lines and uncertainties is achieved. Inversion of the transitions through a weighted least-squares-type procedure results in MARVEL energy levels and associated uncertainties. Local sensitivity coefficients could be computed for each energy level. The resulting set of MARVEL levels is called active as when new experimental measurements become available the same evaluation, adjustment, and inversion procedure should be repeated in order to obtain more dependable energy levels and uncertainties. MARVEL is tested on the example of the H-2 O-17 isotopologue of water and a list of 2736 dependable energy levels, based on 8369 transitions, has been obtained. (c) 2007 Elsevier Inc. All rights reserved
High accuracy calculations of the rotation-vibration spectrum of H
Calculation of the rotation-vibration spectrum of H3+, as well as of its
deuterated isotopologues, with near-spectroscopic accuracy requires the
development of sophisticated theoretical models, methods, and codes. The
present paper reviews the state-of-the-art in these fields. Computation of
rovibrational states on a given potential energy surface (PES) has now become
standard for triatomic molecules, at least up to intermediate energies, due to
developments achieved by the present authors and others. However, highly
accurate Born--Oppenheimer energies leading to highly accurate PESs are not
accessible even for this two-electron system using conventional electronic
structure procedures e.g., configuration-interaction or coupled-cluster
techniques with extrapolation to the complete basis set limit). For this
purpose highly specialized techniques must be used, e.g., those employing
explicitly correlated Gaussians and nonlinear parameter optimizations. It has
also become evident that a very dense grid of \ai\ points is required to obtain
reliable representations of the computed points extending from the minimum to
the asymptotic limits. Furthermore, adiabatic, relativistic, and QED correction
terms need to be considered to achieve near-spectroscopic accuracy during
calculation of the rotation-vibration spectrum of H3+. The remaining and most
intractable problem is then the treatment of the effects of non-adiabatic
coupling on the rovibrational energies, which, in the worst cases, may lead to
corrections on the order of several \cm. A promising way of handling this
difficulty is the further development of effective, motion- or even
coordinate-dependent, masses and mass surfaces. Finally, the unresolved
challenge of how to describe and elucidate the experimental pre-dissociation
spectra of H and its isotopologues is discussed.Comment: Topical review to be published in J Phys B: At Mol Opt Phy
Experimental energy levels and partition function of the C molecule
The carbon dimer, the C molecule, is ubiquitous in astronomical
environments. Experimental-quality rovibronic energy levels are reported for
C, based on rovibronic transitions measured for and among its
singlet, triplet, and quintet electronic states, reported in 42 publications.
The determination utilizes the Measured Active Rotational-Vibrational Energy
Levels (MARVEL) technique. The 23,343 transitions measured experimentally and
validated within this study determine 5,699 rovibronic energy levels, 1,325,
4,309, and 65 levels for the singlet, triplet, and quintet states investigated,
respectively. The MARVEL analysis provides rovibronic energies for six singlet,
six triplet, and two quintet electronic states. For example, the lowest
measurable energy level of the \astate\ state, corresponding to the total
angular momentum quantum number and the spin-multiplet component, is
603.817(5) \cm. This well-determined energy difference should facilitate
observations of singlet--triplet intercombination lines which are thought to
occur in the interstellar medium and comets. The large number of highly
accurate and clearly labeled transitions that can be derived by combining
MARVEL energy levels with computed temperature-dependent intensities should
help a number of astrophysical observations as well as corresponding laboratory
measurements. The experimental rovibronic energy levels, augmented, where
needed, with {\it ab initio} variational ones based on empirically adjusted and
spin-orbit coupled potential energy curves obtained using the \Duo\ code, are
used to obtain a highly accurate partition function, and related thermodynamic
data, for C up to 4,000 K.Comment: ApJ Supplements (in press), 48 page
Uncertainty Estimates for Theoretical Atomic and Molecular Data
Sources of uncertainty are reviewed for calculated atomic and molecular data
that are important for plasma modeling: atomic and molecular structure and
cross sections for electron-atom, electron-molecule, and heavy particle
collisions. We concentrate on model uncertainties due to approximations to the
fundamental many-body quantum mechanical equations and we aim to provide
guidelines to estimate uncertainties as a routine part of computations of data
for structure and scattering.Comment: 65 pages, 18 Figures, 3 Tables. J. Phys. D: Appl. Phys. Final
accepted versio
MARVEL Analysis of the Measured High-Resolution Rovibronic Spectra of 90Zr16O
Zirconium oxide(ZrO) is an important astrophysical molecule that defines the
S-star classification class for cool giant stars. Accurate, empirical
rovibronic energy levels, with associated labels and uncertainties, are
reported for 9 low-lying electronic states of the diatomic 90Zr16O molecule.
These 8088 empirical energy levels are determined using the Marvel (Measured
Active Rotational-Vibrational Energy Levels) algorithm with 23 317 input
assigned transition frequencies, 22 549 of which were validated. A
temperature-dependent partition function is presented alongside updated
spectroscopic constants for the 9 low-lying electronic states
IR Spectrum of the O-HO Hydrogen Bond of Phthalic Acid Monomethylester in Gas Phase and in CCl Solution
The absorption spectrum of the title compound in the spectral range of the
Hydrogen-bonded OH-stretching vibration has been investigated using a
five-dimensional gas phase model as well as a QM/MM classical molecular
dynamics simulation in solution. The gas phase model predicts a Fermi-resonance
between the OH-stretching fundamental and the first OH-bending overtone
transition with considerable oscillator strength redistribution. The anharmonic
coupling to a low-frequency vibration of the Hydrogen bond leading to a
vibrational progression is studied within a diabatic potential energy curve
model. The condensed phase simulation of the dipole-dipole correlation function
results in a broad band in the 3000 \cm region in good agreement with
experimental data. Further, weaker absorption features around 2600 \cm have
been identified as being due to motion of the Hydrogen within the Hydrogen
bond.Comment: Contribution to Horizons in Hydrogen Bond Research Conference, Paris
200
The effect of loving kindness meditation and student teachers stress and empathy
Teachers face increasing demands in the twenty-first century as they engage with students, administrators, coworkers, staff, and parents. High demands and stressors may generate feelings of emotional exhaustion in educators. If left ignored or untreated the emotional exhaustion may eventually lead to burnout and impairment. This prospectus highlights a study designed to explore a preventative option to mitigate the experience of stress felt by student teachers through a structured, guided mindfulness training practice: loving kindness meditation
- …
