12 research outputs found

    Bevacizumab and carboplatin increase survival and asymptomatic tumor volume in a glioma model

    No full text
    To evaluate efficacy and MRI findings after intravenous bevacizumab and/or carboplatin in a human glioma animal model, we randomized male nude rats with intracerebral UW28 human glioma xenografts to four groups: (1) controls (n = 9), (2) bevacizumab 10 mg/kg (n = 6), (3) carboplatin 200 mg/m2 (n = 6), and (4) bevacizumab + carboplatin (n = 6). MRI was performed on the day of treatment (day 7–10) and 1 week later, and rats were followed for survival. Dynamic MRI was done in three controls and three rats treated with bevacizumab with or without carboplatin before and 24 h after treatment. Median overall survival (OS) was as follows: group 1, 16 days; group 2, 23 days; group 3, 22 days; group 4, 36 days. OS was significantly longer in group 4 than in group 1 (p = 0.0011), group 2 (p = 0.0014), and group 3 (p = 0.0015), and rats had significantly larger tumors. No objective tumor responses were observed on MR images at 1 week after treatment; however, after bevacizumab, dynamic MRI showed reduced gadolinium enhancement intensity and increased time to peak, consistent with decreased vascular permeability. Carboplatin + bevacizumab is effective and superior over bevacizumab or carboplatin monotherapy in this animal model. Increased survival concomitant with increased asymptomatic tumor volume is suggestive that vascular targeting with reduced peritumoral edema and mass effect contributes to the efficacy of bevacizumab. The promising survival data warrant future clinical trials using bevacizumab + carboplatin

    Cyclophosphamide Enhances Human Tumor Growth in Nude Rat Xenografted Tumor Models1

    Get PDF
    Abstract The effect of the immunomodulatory chemotherapeutic agent cyclophosphamide (CTX) on tumor growth was investigated in primary and metastatic intracerebral and subcutaneous rat xenograft models. Nude rats were treated with CTX (100 mg/kg, intraperitoneally) 24 hours before human ovarian carcinoma (SKOV3), small cell lung carcinoma (LX-1 SCLC), and glioma (UW28, U87MG, and U251) tumor cells were inoculated subcutaneously, intraperitoneally, or in the right cerebral hemisphere or were infused into the right internal carotid artery. Tumor development was monitored and recorded. Potential mechanisms were further investigated. Only animals that received both CTX and Matrigel showed consistent growth of subcutaneous tumors. Cyclophosphamide pretreatment increased the percentage (83.3% vs 0%) of animals showing intraperitoneal tumors. In intracerebral implantation tumor models, CTX pretreatment increased the tumor volume and the percentage of animals showing tumors. Cyclophosphamide increased lung carcinoma bone and facial metastases after intra-arterial injection, and 20% of animals showed brain metastases. Cyclophosphamide transiently decreased nude rat white blood cell counts and glutathione concentration, whereas serum vascular endothelial growth factor was significantly elevated. Cyclophosphamide also increased CD31 reactivity, a marker of vascular endothelium, and macrophage (CD68-positive) infiltration into glioma cell-inoculated rat brains. Cyclophosphamide may enhance primary and metastatic tumor growth through multiple mechanisms, including immune modulation, decreased response to oxidative stress, increased tumor vascularization, and increased macrophage infiltration. These findings may be clinically relevant because chemotherapy may predispose human cancer subjects to tumor growth in the brain or other tissues

    Efficacy and MRI of rituximab and methotrexate treatment in a nude rat model of CNS lymphoma

    No full text
    To determine the efficacy of methotrexate and/or rituximab in a CNS lymphoma model and to evaluate MRI modalities for monitoring efficacy, we inoculated female athymic nude rats (rnu/rnu) intracerebrally with human MC116 B-lymphoma cells. Between days 16 and 26, rats were randomized to receive intravenous (IV) treatment with (1) saline (controls, n = 15), (2) methotrexate 1,000 mg/m2 (n = 6), (3) rituximab 375 mg/m2 (n = 6), or (4) rituximab plus methotrexate (n = 6). T2/fluid-attenuated inversion recovery (FLAIR) and gadolinium contrast-enhanced T1 MRI sequences were performed prior to and 1 week after treatment. IV rituximab gave an objective tumor response in four of six animals (>50% reduction in tumor volume comparing pre- and posttreatment T2/FLAIR MRI) and resulted in stable disease (50%–125% of baseline) in another animal. The percent change in tumor volume on T2/FLAIR images was significantly different in the control versus rituximab group (p = 0.0051). IV methotrexate slowed tumor growth, compared to controls, but only one of six animals had an objective response. In untreated controls, tumor histological volumes correlated well with T2/FLAIR or contrast-enhanced T1 images (r = 0.877). In the treatment groups, T2/FLAIR correlation was good, but the gadolinium-enhanced T1 MRI was not significantly correlated with histology (r = 0.19). The MC116 CNS lymphoma model seems valuable for preclinical testing of efficacy and toxicity of treatment regimens. IV rituximab was highly effective, but methotrexate was only minimally effective. T2/FLAIR was superior to contrast-enhanced T1 for monitoring efficacy

    Regulatory T cells are strong promoters of acute ischemic stroke in mice by inducing dysfunction of the cerebral microvasculature

    No full text
    We have recently identified T cells as important mediators of ischemic brain damage, but the contribution of the different T-cell subsets is unclear. Forkhead box P3 (FoxP3)–positive regulatory T cells (Tregs) are generally regarded as prototypic anti-inflammatory cells that maintain immune tolerance and counteract tissue damage in a variety of immune-mediated disorders. In the present study, we examined the role of Tregs after experimental brain ischemia/reperfusion injury. Selective depletion of Tregs in the DEREG mouse model dramatically reduced infarct size and improved neurologic function 24 hours after stroke and this protective effect was preserved at later stages of infarct development. The specificity of this detrimental Treg effect was confirmed by adoptive transfer experiments in wild-type mice and in Rag1(−/−) mice lacking lymphocytes. Mechanistically, Tregs induced microvascular dysfunction in vivo by increased interaction with the ischemic brain endothelium via the LFA-1/ICAM-1 pathway and platelets and these findings were confirmed in vitro. Ablation of Tregs reduced microvascular thrombus formation and improved cerebral reperfusion on stroke, as revealed by ultra-high-field magnetic resonance imaging at 17.6 Tesla. In contrast, established immunoregulatory characteristics of Tregs had no functional relevance. We define herein a novel and unexpected role of Tregs in a primary nonimmunologic disease state
    corecore