62 research outputs found

    Modelling Blood Pressure in Stenosed Coronary Arteries

    Get PDF
    In this paper a 1D model is presented for the simulation of blood flow in stenosed coronary arteries. The model was developed by implementing a special boundary counditions in a previously published arterial blood flow model. The stenosis as well as the arterioles were modelled as linear resistances. Using patient-specific parameters, blood flow can be calculated for different inlet flow rates. The model was used to simulate blood pressure waveforms of 5 patients diagnosed with coronary stenosis. Simulation results show good agreement with measurement data

    Wall shear stress in the development of in-stent restenosis revisited. A critical review of clinical data on shear stress after intracoronary stent implantation

    Get PDF
    The average wall shear stress (WSS) is in 1 Pa range in coronary arteries, while the stretching effect of an implanted coronary stent can generate up to 3 × 105 times higher circumferential stress in the vessel wall. It is widely accepted that WSS plays a critical role in the development of restenosis after coronary stent implantation, but relevant clinical endpoint studies are lack­ing. Fluid dynamics modeling suggests an association between WSS and intimal hyperplasia, however, such an association is not established when the compensating healing process becomes an overshoot phenomenon. This review summarizes available clinical results and concepts of potential clinical importance

    Effects of essential oil combinations on pathogenic yeasts and moulds

    Get PDF
    Essential oils (EOs) can be used as alternative or complementary antifungal agents against human pathogenic moulds and yeasts. To reduce the effective dose of antimicrobial agents, EOs are combined which can lead to synergistic or additive effect. In this study the anti-yeast and anti-mould activities of selected EOs were investigated, alone and in combinations, against clinical isolates of Candida albicans, C. parapsilosis, Aspergillus fumigatus, A. terreus, Rhizopus microsporus, Fusarium solani and Lichtheimia corymbifera. Minimum inhibitory concentrations (MICs) were determined for the EOs of cinnamon, citronella, clove, spearmint and thyme. To investigate the combination effect of the EOs, fractional inhibitory concentrations (FICs) were defined by the checkerboard method and the type of interaction was determined by the FIC index (FICI). FIC index below 0.5 was considered as synergism and between 0.5 and 1 as additive effect. Strongest antifungal activity was showed by thyme EO with MIC values below 1.0 mg/ml. Combination of EOs resulted in additive or indifferent effect, with occasional “borderline synergism”. The best combination was cinnamon with clove leading to additive effect in all cases
    corecore