173 research outputs found

    Diffusive Nested Sampling

    Get PDF
    We introduce a general Monte Carlo method based on Nested Sampling (NS), for sampling complex probability distributions and estimating the normalising constant. The method uses one or more particles, which explore a mixture of nested probability distributions, each successive distribution occupying ~e^-1 times the enclosed prior mass of the previous distribution. While NS technically requires independent generation of particles, Markov Chain Monte Carlo (MCMC) exploration fits naturally into this technique. We illustrate the new method on a test problem and find that it can achieve four times the accuracy of classic MCMC-based Nested Sampling, for the same computational effort; equivalent to a factor of 16 speedup. An additional benefit is that more samples and a more accurate evidence value can be obtained simply by continuing the run for longer, as in standard MCMC.Comment: Accepted for publication in Statistics and Computing. C++ code available at http://lindor.physics.ucsb.edu/DNes

    Improved tensor-product expansions for the two-particle density matrix

    Full text link
    We present a new density-matrix functional within the recently introduced framework for tensor-product expansions of the two-particle density matrix. It performs well both for the homogeneous electron gas as well as atoms. For the homogeneous electron gas, it performs significantly better than all previous density-matrix functionals, becoming very accurate for high densities and outperforming Hartree-Fock at metallic valence electron densities. For isolated atoms and ions, it is on a par with previous density-matrix functionals and generalized gradient approximations to density-functional theory. We also present analytic results for the correlation energy in the low density limit of the free electron gas for a broad class of such functionals.Comment: 4 pages, 2 figure

    Application of an electrified benthic frame trawl for sampling fish in a very large European river (the Danube River) – Is offshore monitoring necessary?

    Get PDF
    The organization of fish assemblages in offshore, deep channel habitats is poorly known in very largerivers compared with shoreline, littoral areas. We report on the parameters and testing of an electrifiedbenthic frame trawl (EBFT), developed for monitoring the distribution and abundance of benthic fishesin the Danube River, Hungary. We also compare the results of the benthic main channel survey witha shoreline electrofishing (SE) data set. Altogether 33 species were collected offshore during the 175trawling paths (500 m long each). Both sample based and individual based rarefaction showed that nighttime SE detected significantly more species with increasing sampling effort than day time trawling ofoffshore areas. However, offshore surveys detected sterlet Acipenser ruthenus, which could not be detectedby SE, even using extreme high sampling effort. Offshore trawling also proved the common occurrenceand high abundance of the strictly protected endemic Danube streber Zingel streber in the river, whichproved to be extremely rare in SE catches. The EBFT caught larger/older individuals of many species thanSE, and indicated diverse size/age structure for many species offshore. Our survey revealed that offshoreareas are intensively used by a variety of species, which occur relatively even, but with variable abundancein the Danube River. We suggest that even a relatively small (i.e. 2 m wide 1 m high) EBFT can be a veryuseful device for monitoring offshore fish assemblages in very large rivers and provide important datafor bioassessment and conservation purposes

    Presence of Many Stable Nonhomogeneous States in an Inertial Car-Following Model

    Full text link
    A new single lane car following model of traffic flow is presented. The model is inertial and free of collisions. It demonstrates experimentally observed features of traffic flow such as the existence of three regimes: free, fluctuative (synchronized) and congested (jammed) flow; bistability of free and fluctuative states in a certain range of densities, which causes the hysteresis in transitions between these states; jumps in the density-flux plane in the fluctuative regime and gradual spatial transition from synchronized to free flow. Our model suggests that in the fluctuative regime there exist many stable states with different wavelengths, and that the velocity fluctuations in the congested flow regime decay approximately according to a power law in time.Comment: 4 pages, 4 figure

    Critical behavior of a traffic flow model

    Full text link
    The Nagel-Schreckenberg traffic flow model shows a transition from a free flow regime to a jammed regime for increasing car density. The measurement of the dynamical structure factor offers the chance to observe the evolution of jams without the necessity to define a car to be jammed or not. Above the jamming transition the dynamical structure factor exhibits for a given k-value two maxima corresponding to the separation of the system into the free flow phase and jammed phase. We obtain from a finite-size scaling analysis of the smallest jam mode that approaching the transition long range correlations of the jams occur.Comment: 5 pages, 7 figures, accepted for publication in Physical Review

    Nested sampling for materials: the case of hard spheres

    Get PDF
    The recently introduced nested sampling algorithm allows the direct and efficient calculation of the partition function of atomistic systems. We demonstrate its applicability to condensed phase systems with periodic boundary conditions by studying the three dimensional hard sphere model. Having obtained the partition function, we show how easy it is to calculate the compressibility and the free energy as functions of the packing fraction and local order, verifying that the transition to crystallinity has a very small barrier, and that the entropic contribution of jammed states to the free energy is negligible for packing fractions above the phase transition. We quantify the previously proposed schematic phase diagram and estimate the extent of the region of jammed states. We find that within our samples, the maximally random jammed configuration is surprisingly disordered

    Variability of M giant stars based on Kepler photometry: general characteristics

    Get PDF
    M giants are among the longest-period pulsating stars which is why their studies were traditionally restricted to analyses of low-precision visual observations, and more recently, accurate ground-based data. Here we present an overview of M giant variability on a wide range of time-scales (hours to years), based on analysis of thirteen quarters of Kepler long-cadence observations (one point per every 29.4 minutes), with a total time-span of over 1000 days. About two-thirds of the sample stars have been selected from the ASAS-North survey of the Kepler field, with the rest supplemented from a randomly chosen M giant control sample. We first describe the correction of the light curves from different quarters, which was found to be essential. We use Fourier analysis to calculate multiple frequencies for all stars in the sample. Over 50 stars show a relatively strong signal with a period equal to the Kepler-year and a characteristic phase dependence across the whole field-of-view. We interpret this as a so far unidentified systematic effect in the Kepler data. We discuss the presence of regular patterns in the distribution of multiple periodicities and amplitudes. In the period-amplitude plane we find that it is possible to distinguish between solar-like oscillations and larger amplitude pulsations which are characteristic for Mira/SR stars. This may indicate the region of the transition between two types of oscillations as we move upward along the giant branch.Comment: 12 pages, 13 figures, accepted for publication in MNRAS. The normalized light curves are available upon reques

    First-Principles Electronic Structure of Solid Picene

    Full text link
    To explore the electronic structure of the first aromatic superconductor, potassium-doped solid picene which has been recently discovered by Mitsuhashi et al with the transition temperatures Tc=720T_c=7 - 20 K, we have obtained a first-principles electronic structure of solid picene as a first step toward the elucidation of the mechanism of the superconductivity. The undoped crystal is found to have four conduction bands, which are characterized in terms of the maximally localized Wannier orbitals. We have revealed how the band structure reflects the stacked arrangement of molecular orbitals for both undoped and doped (K3_3picene) cases, where the bands are not rigid. The Fermi surface for K3_3picene is a curious composite of a warped two-dimensional surface and a three-dimensional one.Comment: 5 pages, 4 figure
    corecore