4 research outputs found
Experimental investigation on low-velocity impact behavior of glass, Kevlar, and hybrid composites with an elastomeric polyurethane matrix
Low-velocity impacts represent a critical dynamic condition for engineering structures. Combining two reinforcing fibers in a single matrix, i.e., hybridization, is considered a feasible way to improve composite performance. In this context, this paper presents an experimental work on composites with Kevlar and glass fabrics and a novel thermoset polyurethane matrix. The coupons are manufactured by vacuum infusion technique and low-velocity impact tests are carried out. First, the impact behavior of Kevlar and glass laminates of different thicknesses is assessed, and then impact tests are performed on different configurations of hybrid laminates, both symmetric and non-symmetric. For the non-symmetric specimens, impact tests were conducted on both sides of the stack. Load vs displacement curves are reported along with absorbed energy. To investigate the damage mechanism, the front, back, and cross-section views of the specimens are analyzed, and features related to the stacking sequences are discussed. Thermographic analyses are carried out on the impacted specimens to further analyze damage. The failure mechanisms are different from traditional epoxy composites and a hybridization effect is reported. The results evidence that the hybrid coupons are viable for structural applications, being capable of absorbing high-impact energies, in particular, non-symmetric hybrid laminates outperformed the Kevlar, glass, and symmetric ones, absorbing roughly 15% less energy for the highest energy impact
Effect of Hybridization of Carbon Fibers on Mechanical Properties of Cellulose Fiber–Cement Composites: A Response Surface Methodology Study
Fiber-reinforced cement composites, particularly those incorporating natural fibers like cellulose, have gained attention for their potential towards more sustainable construction. However, natural fibers present inherent deficiencies in mechanical properties and can benefit from hybridization with carbon fibers. This study focuses on the incorporation of cellulose and carbon fibers, in varying contents, into fibrocement composites, employing a Response Surface Methodology (RSM) to optimize the material characteristics. The methodology involves testing, encompassing flexural tensile, compression, and fracture toughness tests. The results indicate an increasing trend in flexural strength for higher carbon fiber content, peaking near 5%. A plateau in flexural strength is observed between 1.2% and 3.6% carbon fiber content, suggesting a range where mechanical properties stabilize. Compressive strength shows a plateau between 1.2 and 3.6% and reaches its highest value (≈33 MPa) at a carbon fiber content greater than 4.8%, and fracture toughness above 320 MPa·m1/2 is achieved with carbon fiber content above 3.6%. This study offers insights into optimizing the synergistic effects of cellulose and carbon fibers in fibrocement composites
Impact of water absorption on the creep performance of epoxy/microcrystalline cellulose composites
Recently, considerable effort has been made to study cellulose/epoxy composites. However, there is a gap when it comes to understanding the post-conditioning anomalous effect of moisture uptake on their mechanical and dynamic-mechanical properties, and on their creep behavior. In this work, up to 10.0 wt% microcrystalline cellulose (MCC) was incorporated into epoxy resin by simple mixing and sonication. Epoxy/MCC composites were fabricated by casting in rubber silicone molds, and rectangular and dog-bone test specimens were produced. The moisture uptake, dynamic mechanical, chemical, tensile, and creep behavior were evaluated. The incorporation of MCC increased the water diffusion coefficient. The changes in storage modulus and glass transition temperature, combined with Fourier-transform infrared spectroscopy analysis, evidenced that water sorption in epoxies causes both plasticization and additional resin crosslinking, although the latter is prevented by the addition of MCC. The creep strain of the composites increased by 60% after conditioning, indicating that plasticization induced by water sorption plays an important role in the long-term properties of the composites.Validerad;2024;NivÃ¥ 2;2024-04-09 (joosat);Funder: The Brazilian Agency Coordenação de Aperfeiçoamento de Pessoal de NÃvel Superior (CAPES, Brazil) Finance Code 001; STINT/CAPES (no. 88881.304743/2018-01); Conselho Nacional de Desenvolvimento CientÃfico e Tecnológico (CNPq, Brazil) (grants no. 408193/2021-2 and 305814/2021-4);Full text license: CC BY</p