6 research outputs found

    Investigating the efficiency limitations of GaN-based emitters

    Full text link
    In this study low temperature and high pressure techniques have been used to investigate the recombination processes taking place in InGaN-based quantum well light emitting diodes (LEDs) which have emission across the blue-green region. Despite relatively high peak efficiencies of the GaN-based emitters, there remain issues relating to the strong efficiency reduction at higher currents that are required for normal operation in most applications. It is observed that there is a relative reduction in efficiency as injection current is increased in a phenonmenon which is known as efficiency droop. There are three main arguments for the cause of efficiency droop that are discussed in the literature: non-radiative Auger recombination, carrier leakage and a defect-related loss mechanism. In spite of extensive research to date, there is little agreement on the cause of efficiency droop as most experiments can only measure the overall efficiency behaviour leading to difficulties in determining the individual contributions from the different loss mechanisms

    The influence of temperature on the recombination processes in blue and green InGaN LEDs

    No full text
    A temperature dependent investigation into the efficiency droop effect in blue and green InGaN light-emitting diodes (LEDs) is presented. The efficiency droop effect is observed to be the strongest at low temperatures in both blue and green LEDs. We show such behaviour is consistent with a reduced hole injection rate resulting in an increased concentration of electron leakage from the quantum wells. Spectral measurements demonstrate that the emission peak has an “s-shape” dependence on tem-perature and a full-width at half-maximum which increases with decreasing temperature below 100 K. Such observations indicate the importance of carrier localization in the InGaN LEDs. At temperatures where hole injection is not problematic the efficiency droop is the result of carrier delocalization and subsequent defect related recombination with increasing current injection

    The influence of temperature on the recombination processes in blue and green InGaN LEDs

    No full text
    A temperature dependent investigation into the efficiency droop effect in blue and green InGaN light-emitting diodes (LEDs) is presented. The efficiency droop effect is observed to be the strongest at low temperatures in both blue and green LEDs. We show such behaviour is consistent with a reduced hole injection rate resulting in an increased concentration of electron leakage from the quantum wells. Spectral measurements demonstrate that the emission peak has an “s-shape” dependence on tem-perature and a full-width at half-maximum which increases with decreasing temperature below 100 K. Such observations indicate the importance of carrier localization in the InGaN LEDs. At temperatures where hole injection is not problematic the efficiency droop is the result of carrier delocalization and subsequent defect related recombination with increasing current injection

    Adenosine as a Marker and Mediator of Cardiovascular Homeostasis: A Translational Perspective

    No full text
    corecore