250 research outputs found

    Synthesis and evaluation of a desymmetrised synthetic lectin:An approach to carbohydrate receptors with improved versatility

    Get PDF
    A new design for carbohydrate receptors features unmatched apolar surfaces, and could lead to selectivities for a broader range of substrates.</p

    Evaluation of In-Hospital Management for Febrile Illness\ud in Northern Tanzania before and after 2010 World Health\ud Organization Guidelines for the Treatment of Malaria

    Get PDF
    In 2010, the World Health Organization (WHO) published updated guidelines emphasizing and expanding recommendations for a parasitological confirmation of malaria before treating with antimalarials. This study aimed to assess differences in historic (2007–2008) (cohort 1) and recent (2011–2012) (cohort 2) hospital cohorts in the diagnosis and treatment of febrile illness in a low malaria prevalence area of northern Tanzania. We analyzed data from two prospective cohort studies that enrolled febrile adolescents and adults aged $13 years. All patients received quality-controlled aerobic blood cultures and malaria smears. We compared patients’ discharge diagnoses, treatments, and outcomes to assess changes in the treatment of malaria and bacterial infections. In total, 595 febrile inpatients were enrolled from two referral hospitals in Moshi, Tanzania. Laboratory-confirmed malaria was detected in 13 (3.2%) of 402 patients in cohort 1 and 1 (0.5%) of 193 patients in cohort 2 (p = 0.041). Antimalarials were prescribed to 201 (51.7%) of 389 smear-negative patients in cohort 1 and 97 (50.5%) of 192 smearnegative patients in cohort 2 (p = 0.794). Bacteremia was diagnosed from standard blood culture in 58 (14.5%) of 401 patients in cohort 1 compared to 18 (9.5%) of 190 patients in cohort 2 (p = 0.091). In cohort 1, 40 (69.0%) of 58 patients with a positive blood culture received antibacterials compared to 16 (88.9%) of 18 patients in cohort 2 (p = 0.094). In cohort 1, 43 (10.8%) of the 399 patients with known outcomes died during hospitalization compared with 12 (6.2%) deaths among 193 patients in cohort 2 (p = 0.073). In a setting of low malaria transmission, a high proportion of smear-negative patients were diagnosed with malaria and treated with antimalarials despite updated WHO guidelines on malaria treatment. Improved laboratory diagnostics for non-malaria febrile illness might help to curb this practice.\u

    Synthetic and Biosynthetic Methods for Selective Cyclisations of 4,5-Epoxy Alcohols to Tetrahydropyrans

    Get PDF
    Tetrahydropyrans (THPs) are common structural motifs found in natural products and synthetic therapeutic molecules. In Nature these 6-membered oxygen heterocycles are often assembled via intramolecular reactions involving either oxy-Michael additions or ring opening of epoxy-alcohols. Indeed, the polyether natural products have been particularly widely studied due to their fascinating structures and important biological properties; these are commonly formed via endo-selective epoxide-opening cascades. In this review we outline synthetic approaches for endo-selective intramolecular epoxide ring opening (IERO) of 4,5-epoxy-alcohols and their applications in natural product synthesis. In addition, the biosynthesis of THP-containing natural products which utilise IERO reactions are reviewed

    Antibacterial activity of cyclo(L-Pro-L-Tyr) and cyclo(D-Pro-L-Tyr) from <i>Streptomyces</i> sp<i>.</i> strain 22-4 against phytopathogenic bacteria

    Get PDF
    <p>Two bioactive cyclic dipeptides, cyclo(L-Pro-L-Tyr) and cyclo(D-Pro-L-Tyr), were isolated from the culture broth of <i>Streptomyces</i> sp. strain 22-4 and tested against three economically important plant pathogens, <i>Xanthomonas axonopodis</i> pv. citri, <i>Ralstonia solanacearum</i> and <i>Clavibacter michiganensis</i>. Both cyclic dipeptides were active against <i>X. axonopodis</i> pv. citri and <i>R. Solanacearum</i> with MIC of 31.25 <i>μ</i>g/mL<i>.</i> No activity could be observed against <i>C. michiganensis</i>.</p

    Path to Actinorhodin:Regio- and Stereoselective Ketone Reduction by a Type II Polyketide Ketoreductase Revealed in Atomistic Detail

    Get PDF
    In type II polyketide synthases (PKSs), which typically biosynthesize several antibiotic and antitumor compounds, the substrate is a growing polyketide chain, shuttled between individual PKS enzymes, while covalently tethered to an acyl carrier protein (ACP): this requires the ACP interacting with a series of different enzymes in succession. During biosynthesis of the antibiotic actinorhodin, produced by Streptomyces coelicolor, one such key binding event is between an ACP carrying a 16-carbon octaketide chain (actACP) and a ketoreductase (actKR). Once the octaketide is bound inside actKR, it is likely cyclized between C7 and C12 and regioselective reduction of the ketone at C9 occurs: how these elegant chemical and conformational changes are controlled is not yet known. Here, we perform protein-protein docking, protein NMR, and extensive molecular dynamics simulations to reveal a probable mode of association between actACP and actKR; we obtain and analyze a detailed model of the C7-C12-cyclized octaketide within the actKR active site; and we confirm this model through multiscale (QM/MM) reaction simulations of the key ketoreduction step. Molecular dynamics simulations show that the most thermodynamically stable cyclized octaketide isomer (7R,12R) also gives rise to the most reaction competent conformations for ketoreduction. Subsequent reaction simulations show that ketoreduction is stereoselective as well as regioselective, resulting in an S-alcohol. Our simulations further indicate several conserved residues that may be involved in selectivity of C7-12 cyclization and C9 ketoreduction. Detailed insights obtained on ACP-based substrate presentation in type II PKSs can help design ACP-ketoreductase systems with altered regio- or stereoselectivity

    Mixing and Matching Genes of Marine and Terrestrial Origin in the Biosynthesis of the Mupirocin Antibiotics

    Get PDF
    With growing understanding of the underlying pathways of polyketide biosynthesis, along with the continual expansion of the synthetic biology toolkit, it is becoming possible to rationally engineer and fine-tune the polyketide biosynthetic machinery for production of new compounds with improved properties such as stability and/or bioactivity. However, engineering the pathway to the thiomarinol antibiotics has proved challenging. Here we report that genes from a marine Pseudoalternomonas sp. producing thiomarinol can be expressed in functional form in the biosynthesis of the clinically important antibiotic mupirocin from the soil bacterium Pseudomonas fluorescens. It is revealed that both pathways employ the same unusual mechanism of tetrahydropyran (THP) ring formation and the enzymes are cross compatible. Furthermore, the efficiency of downstream processing of 10,11-epoxy versus 10,11-alkenic metabolites are comparable. Optimisation of the fermentation conditions in an engineered strain in which production of pseudomonic acid A (with the 10,11-epoxide) is replaced by substantial titres of the more stable pseudomonic acid C (with a 10,11-alkene) pave the way for its development as a more stable antibiotic with wider applications than mupirocin

    Species-specific relative ahr1 binding affinities of 2,3,4,7,8-pentachlorodibenzofuran explain avian species differences in its relative potency

    Get PDF
    Author Posting. © The Author(s), 2013. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution. The definitive version was published in Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 161 (2014): 21-25, doi:10.1016/j.cbpc.2013.12.005.Results of recent studies showed that 2,3,4,7,8-pentachlorodibenzofuran (PeCDF) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) are equipotent in domestic chicken (Gallus gallus domesticus) while PeCDF is more potent than TCDD in ring-necked pheasant (Phasianus colchicus) and Japanese quail (Coturnix japonica). To elucidate the mechanism(s) underlying these differences in relative potency of PeCDF among avian species, we tested the hypothesis that this is due to species-specific differential binding affinity of PeCDF to the aryl hydrocarbon receptor 1 (AHR1). Here, we modified a cell-based binding assay that allowed us to measure the binding affinity of dioxin-like compounds (DLCs) to avian AHR1 expressed in COS-7 (fibroblast-like cells). The results of the binding assay show that PeCDF and TCDD bind with equal affinity to chicken AHR1, but PeCDF binds with greater affinity than TCDD to pheasant (3-fold) and Japanese quail (5-fold) AHR1. The current report introduces a COS-7 whole-cell binding assay and provides a mechanistic explanation for differential relative potencies of PeCDF among species of birds.This research was supported by an unrestricted grant from the Dow Chemical Company to the University of Ottawa, Environment Canada’s Wildlife Toxicology and Disease and STAGE programs and, in part, by a Discovery Grant from the National Science and Engineering Research Council of Canada (Project # 326415-07). The authors wish to acknowledge the support of an instrumentation grant from the Canada Foundation for Infrastructure. Professor Giesy was supported by the Canada Research Chair program and an at large Chair Professorship at the Department of Biology and Chemistry and State Key Laboratory in Marine Pollution, City University of Hong Kong, and the Einstein Professor Program of the Chinese Academy of Sciences. M. Hahn was supported by NOAA Sea Grant (grant number NA06OAR4170021 (R/B-179))

    Incidence of human brucellosis in the Kilimanjaro Region of Tanzania in the periods 2007-2008 and 2012-2014

    Get PDF
    Background: Brucellosis causes substantial morbidity among humans and their livestock. There are few robust estimates of the incidence of brucellosis in sub-Saharan Africa. Using cases identified through sentinel hospital surveillance and health care utilization data, we estimated the incidence of brucellosis in Moshi Urban and Moshi Rural Districts, Kilimanjaro Region, Tanzania, for the periods 2007–2008 and 2012–2014. Methods: Cases were identified among febrile patients at two sentinel hospitals and were defined as having either a 4-fold increase in Brucella microscopic agglutination test titres between acute and convalescent serum or a blood culture positive for Brucella spp. Findings from a health care utilization survey were used to estimate multipliers to account for cases not seen at sentinel hospitals. Results: Of 585 patients enrolled in the period 2007–2008, 13 (2.2%) had brucellosis. Among 1095 patients enrolled in the period 2012–2014, 32 (2.9%) had brucellosis. We estimated an incidence (range based on sensitivity analysis) of brucellosis of 35 (range 32–93) cases per 100 000 persons annually in the period 2007–2008 and 33 (range 30–89) cases per 100 000 persons annually in the period 2012–2014. Conclusions: We found a moderate incidence of brucellosis in northern Tanzania, suggesting that the disease is endemic and an important human health problem in this area
    corecore