78 research outputs found

    Summary Report: Glass-Ceramic Waste Forms for Combined Fission Products

    Get PDF
    Glass-ceramic waste form development began in FY 2010 examining two combined waste stream options: (1) alkaline earth (CS) + lanthanide (Ln), and (2) + transition metal (TM) fission-product waste streams generated by the uranium extraction (UREX+) separations process. Glass-ceramics were successfully developed for both options however; Option 2 was selected over Option 1, at the conclusion of 2010, because Option 2 immobilized all three waste streams with only a minimal decrease in waste loading. During the first year, a series of three glass (Option 2) were fabricated that varied waste loading-WL (42, 45, and 50 mass%) at fixed molar ratios of CaO/MoO{sub 3} and B{sub 2}O{sub 3}/alkali both at 1.75. These glass-ceramics were slow cooled and characterized in terms of phase assemblage and preliminary irradiation stability. This fiscal year, further characterization was performed on the FY 2010 Option 2 glass-ceramics in terms of: static leach testing, phase analysis by transmission electron microscopy (TEM), and irradiation stability (electron and ion). Also, a new series of glass-ceramics were developed for Option 2 that varied the additives: Al{sub 2}O{sub 3} (0-6 mass%), molar ratio of CaO/MoO{sub 3} and B{sub 2}O{sub 3}/alkali (1.75 to 2.25) and waste loading (50, 55, and 60 mass%). Lastly, phase pure powellite and oxyapatite were synthesized for irradiation studies. Results of this fiscal year studies showed compositional flexibility, chemical stability, and radiation stability in the current glass-ceramic system. First, the phase assemblages and microstructure of all of the FY 2010 and 2011 glass-ceramics are very similar once subjected to the slow cool heat treatment. The phases identified in these glass-ceramics were oxyapatite, powellite, cerianite, and ln-borosilicate. This shows that variations in waste loading or additives can be accommodated without drastically changing the phase assemblage of the waste form, thus making the processing and performance characteristics of the waste form more predictable/flexible. However, in the future, the glass phase still needs to be accurately characterized to determine the effects of waste loading and additives on the glass structure. Initial investigations show a borosilicate glass phase rich in silica. Second, the normalized concentrations of elements leached from the waste form during static leach testing were all below 0.6 g/L after 28d at 90 C, by the Product Consistency Test (PCT), method B. These normalized concentrations are on par with durable waste glasses such as the Low-Activity Reference Material (LRM) glass. The release rates for the crystalline phases (oxyapatite and powellite) appear to be lower (more durable) than the glass phase based on the relatively low release rates of Mo, Ca, and Ln found in the crystalline phases compared to Na and B that are mainly observed in the glass phase. However, further static leach testing on individual crystalline phases is needed to confirm this statement. Third, Ion irradiation and In situ TEM observations suggest that these crystalline phases (such as oxyapatite, ln-borosilicate, and powellite) in silicate based glass ceramic waste forms exhibit stability to 1000 years at anticipated doses (2 x 10{sup 10}-2 x 10{sup 11} Gy). This is adequate for the short lived isotopes in the waste, which lead to a maximum cumulative dose of {approx}7 x 10{sup 9} Gy, reached after {approx}100 yrs, beyond which the dose contributions are negligible. The cumulate dose calculations are based on a glass-ceramic at WL = 50 mass%, where the fuel has a burn-up of 51GWd/MTIHM, immobilized after 5 yr decay from reactor discharge

    Glass Ceramic Waste Forms for Combined CS+LN+TM Fission Products Waste Streams

    Get PDF
    In this study, glass ceramics were explored as an alternative waste form for glass, the current baseline, to be used for immobilizing alkaline/alkaline earth + lanthanide (CS+LN) or CS+LN+transition metal (TM) fission-product waste streams generated by a uranium extraction (UREX+) aqueous separations type process. Results from past work on a glass waste form for the combined CS+LN waste streams showed that as waste loading increased, large fractions of crystalline phases precipitated upon slow cooling.[1] The crystalline phases had no noticeable impact on the waste form performance by the 7-day product consistency test (PCT). These results point towards the development of a glass ceramic waste form for treating CS+LN or CS+LN+TM combined waste streams. Three main benefits for exploring glass ceramics are: (1) Glass ceramics offer increased solubility of troublesome components in crystalline phases as compared to glass, leading to increased waste loading; (2) The crystalline network formed in the glass ceramic results in higher heat tolerance than glass; and (3) These glass ceramics are designed to be processed by the same melter technology as the current baseline glass waste form. It will only require adding controlled canister cooling for crystallization into a glass ceramic waste form. Highly annealed waste form (essentially crack free) with up to 50X lower surface area than a typical High-Level Waste (HLW) glass canister. Lower surface area translates directly into increased durability. This was the first full year of exploring glass ceramics for the Option 1 and 2 combined waste stream options. This work has shown that dramatic increases in waste loading are achievable by designing a glass ceramic waste form as an alternative to glass. Table S1 shows the upper limits for heat, waste loading (based on solubility), and the decay time needed before treatment can occur for glass and glass ceramic waste forms. The improvements are significant for both combined waste stream options in terms of waste loading and/or decay time required before treatment. For Option 1, glass ceramics show an increase in waste loading of 15 mass % and reduction in decay time of 24 years. Decay times of {approx}50 years or longer are close to the expected age of the fuel that will be reprocessed when the modified open or closed fuel cycle is expected to be put into action. Option 2 shows a 2x to 2.5x increase in waste loading with decay times of only 45 years. Note that for Option 2 glass, the required decay time before treatment is only 35 years because of the waste loading limits related to the solubility of MoO{sub 3} in glass. If glass was evaluated for similar waste loadings as those achieved in Option 2 glass ceramics, the decay time would be significantly longer than 45 years. These glass ceramics are not optimized, but already they show the potential to dramatically reduce the amount of waste generated while still utilizing the proven processing technology used for glass production

    Alternative Waste Forms for Electro-Chemical Salt Waste

    Get PDF
    This study was undertaken to examine alternate crystalline (ceramic/mineral) and glass waste forms for immobilizing spent salt from the Advanced Fuel Cycle Initiative (AFCI) electrochemical separations process. The AFCI is a program sponsored by U.S. Department of Energy (DOE) to develop and demonstrate a process for recycling spent nuclear fuel (SNF). The electrochemical process is a molten salt process for the reprocessing of spent nuclear fuel in an electrorefiner and generates spent salt that is contaminated with alkali, alkaline earths, and lanthanide fission products (FP) that must either be cleaned of fission products or eventually replaced with new salt to maintain separations efficiency. Currently, these spent salts are mixed with zeolite to form sodalite in a glass-bonded waste form. The focus of this study was to investigate alternate waste forms to immobilize spent salt. On a mole basis, the spent salt is dominated by alkali and Cl with minor amounts of alkaline earth and lanthanides. In the study reported here, we made an effort to explore glass systems that are more compatible with Cl and have not been previously considered for use as waste forms. In addition, alternate methods were explored with the hope of finding a way to produce a sodalite that is more accepting of as many FP present in the spent salt as possible. This study was done to investigate two different options: (1) alternate glass families that incorporate increased concentrations of Cl; and (2) alternate methods to produce a mineral waste form

    Outcomes of highly active antiretroviral therapy in the context of universal access to healthcare: the U.S. Military HIV Natural History Study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To examine the outcomes of highly-active antiretroviral therapy (HAART) for individuals with free access to healthcare, we evaluated 2327 patients in a cohort study composed of military personnel and beneficiaries with HIV infection who initiated HAART from 1996 to the end of 2007.</p> <p>Methods</p> <p>Outcomes analyzed were virologic suppression (VS) and failure (VF), CD4 count changes, AIDS and death. VF was defined as never suppressing or having at least one rebound event. Multivariate (MV) analyses stratified by the HAART initiation year (before or after 2000) were performed to identify risk factors associated with these outcomes.</p> <p>Results</p> <p>Among patients who started HAART after 2000, 81% had VS at 1 year (N = 1,759), 85% at 5 years (N = 1,061), and 82% at 8 years (N = 735). Five years post-HAART, the median CD4 increase was 247 cells/ml and 34% experienced VF. AIDS and mortality rates at 5 years were 2% and 0.3%, respectively. In a MV model adjusted for known risk factors associated with treatment response, being on active duty (versus retired) at HAART initiation was associated with a decreased risk of AIDS (HR = 0.6, 95% CI 0.4-1.0) and mortality (0.6, 0.3-0.9), an increased probability of CD4 increase ≥ 50% (1.2, 1.0-1.4), but was not significant for VF.</p> <p>Conclusions</p> <p>In this observational cohort, VS rates approach those described in clinical trials. Initiating HAART on active duty was associated with even better outcomes. These findings support the notion that free access to healthcare likely improves the response to HAART thereby reducing HIV-related morbidity and mortality.</p

    Alternative Electrochemical Salt Waste Forms, Summary of FY/CY2011 Results

    Get PDF
    This report summarizes the 2011 fiscal+calendar year efforts for developing waste forms for a spent salt generated in reprocessing nuclear fuel with an electrochemical separations process. The two waste forms are tellurite (TeO2-based) glasses and sol-gel-derived high-halide mineral analogs to stable minerals found in nature

    Randomized, placebo-controlled trials of dichlorphenamide in periodic paralysis

    Get PDF
    Objective: To determine the short-term and long-term effects of dichlorphenamide (DCP) on attack frequency and quality of life in hyperkalemic (HYP) and hypokalemic (HOP) periodic paralysis. Methods: Two multicenter randomized, double-blind, placebo-controlled trials lasted 9 weeks (Class I evidence), followed by a 1-year extension phase in which all participants received DCP. Forty-four HOP and 21 HYP participants participated. The primary outcome variable was the average number of attacks per week over the final 8 weeks of the double-blind phase. Results: The median attack rate was lower in HOP participants on DCP than in participants on placebo (0.3 vs 2.4, p 0.02). The 9-week mean change in the Physical Component Summary score of the Short Form-36 was also better in HOP participants receiving DCP (treatment effect 7.29 points, 95% confidence interval 2.26 to 12.32, p 0.006). The median attack rate was also lower in HYP participants on DCP (0.9 vs 4.8) than in participants on placebo, but the difference in median attack rate was not significant (p 0.10). There were no significant effects of DCP on muscle strength or muscle mass in either trial. The most common adverse events in both trials were paresthesia (47% DCP vs 14% placebo, both trials combined) and confusion (19% DCP vs 7% placebo, both trials combined). Conclusions: DCP is effective in reducing the attack frequency, is safe, and improves quality of life in HOP periodic paralysis. Classification of evidence: These studies provide Class I evidence that DCP significantly reduces attack frequency in HOP but lacked the precision to support either efficacy or lack of efficacy of DCP in HYP
    • …
    corecore