35 research outputs found

    Identification of novel APOB mutations by targeted next-generation sequencing for the molecular diagnosis of familial hypobetalipoproteinemia

    Get PDF
    International audienceFamilial hypobetalipoproteinemia (FHBL) is a co-dominant disorder characterized by decreased plasma levels of LDL-cholesterol and apolipoprotein B (ApoB). Currently, genetic diagnosis in FHBL relies largely on Sanger sequencing to identify APOB and PCSK9 gene mutations and on western blotting to detect truncated ApoB species

    Seipin localizes at endoplasmic-reticulum-mitochondria contact sites to control mitochondrial calcium import and metabolism in adipocytes

    Get PDF
    Deficiency of the endoplasmic reticulum (ER) protein seipin results in generalized lipodystrophy by incompletely understood mechanisms. Here, we report mitochondrial abnormalities in seipin-deficient patient cells. A subset of seipin is enriched at ER-mitochondria contact sites (MAMs) in human and mouse cells and localizes in the vicinity of calcium regulators SERCA2, IP3R, and VDAC. Seipin association with MAM calcium regulators is stimulated by fasting-like stimuli, while seipin association with lipid droplets is promoted by lipid loading. Acute seipin removal does not alter ER calcium stores but leads to defective mitochondrial calcium import accompanied by a widespread reduction in Krebs cycle metabolites and ATP levels. In mice, inducible seipin deletion leads to mitochondrial dysfunctions preceding the development of metabolic complications. Together, these data suggest that seipin controls mitochondrial energy metabolism by regulating mitochondrial calcium influx at MAMs. In seipin-deficient adipose tissue, reduced ATP production compromises adipocyte properties, contributing to lipodystrophy pathogenesis.Peer reviewe

    Link between Omega 3 Fatty Acids Carried by Lipoproteins and Breast Cancer Severity

    No full text
    According to the International Agency for Research on Cancer (IARC) more than 10% of cancers can be explained by inadequate diet and excess body weight. Breast cancer is the most common cancer affecting women. The goal of our study is to clarify the relationship between ω3 fatty acids (FA) carried by different lipoproteins and breast cancer (BC) severity, according to two approaches: through clinic-biological data and through in vitro breast cancer cell models. The clinical study has been performed in sera from a cohort of BC women (n = 140, ICO, France) whose tumors differed by their hormone receptors status (HR− for tumors negative for estrogen receptors and progesterone receptors, HR+ for tumors positive for either estrogen receptors or progesterone receptors) and the level of proliferation markers (Ki-67 ≀ 20% Prolif− and Ki-67 ≄ 30% Prolif+). Lipids and ω3FA have been quantified in whole serum and in apoB-containing lipoproteins (Non-HDL) or free of it (HDL). Differences between Prolif− and Prolif+ were compared by Wilcoxon test in each sub-group HR+ and HR−. Results are expressed as median [25th–75th percentile]. Plasma cholesterol, triglycerides, HDL-cholesterol and Non-HDL cholesterol did not differ between Prolif− and Prolif+ sub-groups of HR− and HR+ patients. Plasma EPA and DHA concentrations did not differ either. In the HR− group, the distribution of EPA and DHA between HDL and Non-HDL differed significantly, as assessed by a higher ratio between the FA concentration in Non-HDL and HDL in Prolif− vs. Prolif+ patients (0.20 [0.15–0.36] vs. 0.04 [0.02–0.08], p = 0.0001 for EPA and 0.08 [0.04–0.10] vs. 0.04 [0.01–0.07], p = 0.04 for DHA). In this HR− group, a significant increase in Non-HDL EPA concentration was also observed in Prolif− vs. Prolif+ (0.18 [0.13–0.40] vs. 0.05 [0.02–0.07], p = 0.001). A relative enrichment on Non-HDL in EPA and DHA was also observed in Prolif− patients vs. Prolif+ patients, as assessed by a higher molar ratio between FA and apoB (0.12 [0.09–0.18] vs. 0.02 [0.01–0.05], p p = 0.04 for DHA). These data were partly confirmed by an in vitro approach of proliferation of isolated lipoproteins containing EPA and DHA on MDA-MB-231 (HR−) and MCF-7 (HR+) cell models. Indeed, among all the studied fractions, only the correlation between the EPA concentration of Non-HDL was confirmed in vitro, although with borderline statistical significance (p = 0.07), in MDA-MB-231 cells. Non-HDL DHA, in the same cells model was significantly correlated to proliferation (p = 0.04). This preliminary study suggests a protective effect on breast cancer proliferation of EPA and DHA carried by apo B-containing lipoproteins (Non-HDL), limited to HR− tumors

    Characterization of Affitin proteolytic digestion in biorelevant media and improvement of their stabilities via protein engineering

    No full text
    International audienceAffitins are a novel class of small 7 kDa artificial proteins which can be used as antibody substitutes in therapeutic, diagnostic and biotechnological applications. One challenge for this type of protein agent is their behaviour in the context of oral administration. The digestive system is central, and biorelevant media have fast emerged as relevant and reliable tools for evaluating the bioavailability of drugs. This study describes, for the first time, the stability of Affitins under simulated gastric and intestinal digestion conditions. Affitins appear to be degraded into stable fragments in in vitro gastric medium. We identified cleavage sites generated by pepsin that were silenced by site-directed mutagenesis. This protein engineering allowed us to enhance Affitin properties. We showed that a mutant M1 containing a double mutation of amino acid residues 6 and 7 in H4 and C3 Affitins acquired a resistance against proteolytic digestion. In addition, these mutations were beneficial for target affinity, as well as for production yield. Finally, we found that the mutated residues kept or increased the important pH and temperature stabilities of Affitins. These improvements are particularly sought after in the development of engineered binding proteins for research tools, preclinical studies and clinical applications

    Luminol Anchors Improve the Electrochemical-Tyrosine-Click Labelling of Proteins

    No full text
    New methodologies for the chemo-selective modifications of peptides and native proteins are of great importance in chemical biology and for the developm ent of therapeutic conjugates. Less abundant and uncharged amino-acid residues are interesting targets to form less heterogeneous conjugates and preserve biological functions. Phenylurazole (PhUr), N-methylphenylurazole (NMePhUr) and N-methylluminol (NMeLum) derivatives were described as tyrosine (Y) anchors after chemical or enzymatic oxydations. Recently, we developed the first electrochemical Y-bioconjugation method coined eY-click to activate PhUr in biocompatible media. In this work, we assessed the limitations, benefits and relative efficiencies of eY-click conjugations performed with a set of PhUr, NMePhUr and NMeLum derivatives. Results evidenced a high efficiency of NMeLum that showed a complete Y-chemoselectivity on polypeptides and biologically relevant proteins after soft electrochemical activation. Side reactions on nucleophilic or heteroaromatic amino-acids such as lysine or tryptophan were never observed during mass spectrometry analysis. Myoglobine, bovine serum albumin, a plant mannosidase, glucose oxidase and the therapeutically relevant antibody trastuzumab were efficiently labelled with a fluorescent probe in a two-step approach combining eY-click and strain-promoted azide-alkyne cyclization (SPAAC). The proteins conserved their structural integrity as observed by circular dichroism and the trastuzumab conjugate showed a similar binding affinity for the natural HER2 ligand as shown by bio-layer interferometry. Compared to our previously described protocol with PhUr, eY-click with NMeLum species showed faster reaction kinetics, higher (complete) Y-chemoselectivity and reactivity, and offer the interesting possibility for the double tagging of solvent-exposed Y

    IRES-dependent translation of the long non coding RNA meloe in melanoma cells produces the most immunogenic MELOE antigens

    No full text
    International audienceMELOE-1 and MELOE-2, two highly specific melanoma antigens involved in T cell immunosurveillance are produced by IRES-dependent translation of the long « non coding » and polycistronic RNA, meloe. In the present study, we document the expression of an additional ORF, MELOE-3, located in the 5â€Č region of meloe. Data from in vitro translation experiments and transfection of melanoma cells with bicistronic vectors documented that MELOE-3 is exclusively translated by the classical cap-dependent pathway. Using a sensitive tandem mass spectrometry technique, we detected the presence of MELOE-3 in total lysates of both melanoma cells and normal melanocytes. This contrasts with our previous observation of the melanoma-restricted expression of MELOE-1 and MELOE-2. Furthermore, in vitro stimulation of PBMC from 6 healthy donors with overlapping peptides from MELOE-1 or MELOE-3 revealed a very scarce MELOE-3 specific T cell repertoire as compared to the abundant repertoire observed against MELOE-1. The poor immunogenicity of MELOE-3 and its expression in melanocytes is consistent with an immune tolerance towards a physiologically expressed protein. In contrast, melanoma-restricted expression of IRES-dependent MELOE-1 may explain its high immunogenicity. In conclusion, within the MELOE family, IRES-dependent antigens represent the best T cell targets for immunotherapy of melanoma

    Elevation of Trimethylamine-N-Oxide in Chronic Kidney Disease: Contribution of Decreased Glomerular Filtration Rate.

    No full text
    International audience(1) Background: Gut microbiota-dependent Trimethylamine-N-oxide (TMAO) has been 5 reported to be strongly linked to renal function and to increased cardiovascular events in the 6 general population and in Chronic Kidney Disease (CKD) patients. Considering the lack of data 7 assessing renal handling of TMAO, we conducted this study to explore renal excretion and 8 mechanisms of accumulation of TMAO during CKD. (2) Methods: We prospectively measured 9 glomerular filtration rate (mGFR) with gold standard methods and plasma concentrations of 10 trimethylamine (TMA), TMAO, choline, betaine and carnitine by LC-MS/MS in 124 controls, CKD 11 and hemodialysis (HD) patients. Renal clearance of each metabolite was assessed in a subgroup of 12 32 patients. (3) Results: Plasma TMAO was inversely correlated with mGFR (r 2 =0.388, p<0.001), 13 confirming elevation of TMAO plasma levels in CKD. TMAO clearances were not significantly 14 different from mGFR, with a mean ± SD TMAO fractional excretion of 105 ± 32 %. This suggests a 15 complete renal excretion of TMAO by glomerular filtration with a negligible participation of 16 tubular secretion or reabsorption, during all stages of CKD. Moreover, TMAO was effectively 17 removed within 4 hours of hemodiafiltration, showing a higher fractional reduction value than that 18 of urea (84.9 ± 6.5 % vs 79.2 ± 5.7 %, p = 0.04). (5) Conclusions: This study reports a strong 19 correlation between plasma TMAO levels and mGFR, in CKD, that can be mainly related to a 20 decrease in TMAO glomerular filtration. Clearance data did not support a significant role for 21 tubular secretion in TMAO renal elimination. 2

    Effect of retinol dehydrogenase gene transfer in a novel rat model of Stargardt disease

    No full text
    International audienceDysfunction of the ATPase-binding Cassette Transporter protein (ABCA4) can lead to early onset macular degeneration, in particular to Stargardt disease. To enable translational research into this form of blindness, we evaluated the effect of Cas9-induced disruptions of the ABCA4 gene to potentially generate new transgenic rat models of the disease. We show that deletion of the short exon preceding the second nucleotide-binding domain is sufficient to drastically knock down protein levels and results in accumulation of retinoid dimers similar to that associated with Stargardt disease. Overexpression of the retinol dehydrogenase enzymes RDH8 and RDH12 can to a limited extent offset the increase in the bisretinoid levels in the Abca4(Ex42-/)- KO rats possibly by restricting the time window in which retinal can dimerize before being reduced to retinol. However, in vivo imaging shows that overexpression of RDH8 can induce retinal degeneration. This may be due to the depletion in the outer segment of the cofactor NADPH, needed for RDH function. The translational potential of RDH therapy as well as other Stargardt disease therapies can be tested using the Abca4 knockdown rat model

    Reduced Lipoprotein(a) Associated With the Apolipoprotein E2 Genotype Confers Cardiovascular Protection in Familial Hypercholesterolemia

    No full text
    International audienceThere are 3 isoforms of apolipoprotein E (apo E) in humans (Δ2, Δ3, and Δ4). They differ by single amino acid substitutions that variably affect their affinity for the low-density lipoprotein receptor (LDLR) and for the LDLR-related protein (LRP1), with Δ2 having the weakest binding to these receptors (1). The plasma levels of lipoprotein(a) [Lp(a)], a highly atherogenic LDL-like lipoprotein species, are influenced by the polymorphism of apo E, with Δ2/Δ2 and Δ4/Δ4 carriers presenting with the lowest and highest Lp(a) plasma concentrations, respectively (1)

    PCSK9 Association With Lipoprotein(a)

    No full text
    RATIONALE: Lipoprotein(a) [Lp(a)] is a highly atherogenic low-density lipoprotein (LDL)-like particle characterized by the presence of apoprotein(a) [apo(a)] bound to apolipoprotein B (apoB). Proprotein Convertase Subtilisin/Kexin type 9 (PCSK9) selectively binds LDL, we hypothesized that it can also be associated with Lp(a) in plasma. OBJECTIVE: Characterize the association of PCSK9 and Lp(a) in 39 subjects with high Lp(a) levels (range 39-320 mg/dl) and in transgenic mice expressing either human apo(a) only or human Lp(a) (via co-expression of human apo(a) and human apoB). METHODS AND RESULTS: We show that PCSK9 is physically associated with Lp(a) in vivo using three different approaches: (i) Analysis of Lp(a) fractions isolated by ultracentrifugation; (ii) Immunoprecipitation of plasma using antibodies to PCSK9 and immunodetection of apo(a); (iii) ELISA quantification of Lp(a)-associated PCSK9. Plasma PCSK9 levels correlated with Lp(a) levels, but not with the number of kringle IV-2 repeats. PCSK9 did not bind to apo(a) only and the association of PCSK9 with Lp(a) was not affected by the loss of the apo(a) region responsible for binding oxidized phospholipids. Preferential association of PCSK9 with Lp(a) vs. LDL (1.7-fold increase) was seen in subjects with high Lp(a) and normal LDL. Finally, Lp(a)-associated PCSK9 levels directly correlated with plasma Lp(a) levels but not with total plasma PCSK9 levels. CONCLUSIONS: Our results show, for the first time, that plasma PCSK9 is found in association with Lp(a) particles in humans with high Lp(a) levels and in mice carrying human Lp(a). Lp(a)-bound PCSK9 may be pursued as a biomarker for cardiovascular risk
    corecore