30 research outputs found
The Business of Employing People with Disabilities: Four Case Studies
This exploratory study examines employer attitudes towards people with disabilities in the labor market. Through in-depth, semi-structured interviews with senior management, human resources staff, directors of diversity, and hiring managers at four corporations, it pinpoints reasons why businesses chose to hire people with disabilities, investigates the perceived benefits and barriers to hiring people with disabilities, and identifies strategies for successfully hiring and retaining workers with disabilities. It fills a gap in examining the attitudes and decision-making processes of U.S. companies that have been leaders in hiring people with disabilities, as well as delving into the special issues of small businesses that may lack exposure to disability employment. It closes with directions for future studies that could extend our understanding of employment of people with disabilities
Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial
Background
Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy
Investigation of hospital discharge cases and SARS-CoV-2 introduction into Lothian care homes
Background
The first epidemic wave of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in Scotland resulted in high case numbers and mortality in care homes. In Lothian, over one-third of care homes reported an outbreak, while there was limited testing of hospital patients discharged to care homes.
Aim
To investigate patients discharged from hospitals as a source of SARS-CoV-2 introduction into care homes during the first epidemic wave.
Methods
A clinical review was performed for all patients discharges from hospitals to care homes from 1st March 2020 to 31st May 2020. Episodes were ruled out based on coronavirus disease 2019 (COVID-19) test history, clinical assessment at discharge, whole-genome sequencing (WGS) data and an infectious period of 14 days. Clinical samples were processed for WGS, and consensus genomes generated were used for analysis using Cluster Investigation and Virus Epidemiological Tool software. Patient timelines were obtained using electronic hospital records.
Findings
In total, 787 patients discharged from hospitals to care homes were identified. Of these, 776 (99%) were ruled out for subsequent introduction of SARS-CoV-2 into care homes. However, for 10 episodes, the results were inconclusive as there was low genomic diversity in consensus genomes or no sequencing data were available. Only one discharge episode had a genomic, time and location link to positive cases during hospital admission, leading to 10 positive cases in their care home.
Conclusion
The majority of patients discharged from hospitals were ruled out for introduction of SARS-CoV-2 into care homes, highlighting the importance of screening all new admissions when faced with a novel emerging virus and no available vaccine
SARS-CoV-2 Omicron is an immune escape variant with an altered cell entry pathway
Vaccines based on the spike protein of SARS-CoV-2 are a cornerstone of the public health response to COVID-19. The emergence of hypermutated, increasingly transmissible variants of concern (VOCs) threaten this strategy. Omicron (B.1.1.529), the fifth VOC to be described, harbours multiple amino acid mutations in spike, half of which lie within the receptor-binding domain. Here we demonstrate substantial evasion of neutralization by Omicron BA.1 and BA.2 variants in vitro using sera from individuals vaccinated with ChAdOx1, BNT162b2 and mRNA-1273. These data were mirrored by a substantial reduction in real-world vaccine effectiveness that was partially restored by booster vaccination. The Omicron variants BA.1 and BA.2 did not induce cell syncytia in vitro and favoured a TMPRSS2-independent endosomal entry pathway, these phenotypes mapping to distinct regions of the spike protein. Impaired cell fusion was determined by the receptor-binding domain, while endosomal entry mapped to the S2 domain. Such marked changes in antigenicity and replicative biology may underlie the rapid global spread and altered pathogenicity of the Omicron variant
The Business of Employing People with Disabilities: Four Case Studies
This exploratory study examines employer attitudes towards people with disabilities in the labor market. Through in-depth, semi-structured interviews with senior management, human resources staff, directors of diversity, and hiring managers at four corporations, it pinpoints reasons why businesses chose to hire people with disabilities, investigates the perceived benefits and barriers to hiring people with disabilities, and identifies strategies for successfully hiring and retaining workers with disabilities. It fills a gap in examining the attitudes and decision-making processes of U.S. companies that have been leaders in hiring people with disabilities, as well as delving into the special issues of small businesses that may lack exposure to disability employment. It closes with directions for future studies that could extend our understanding of employment of people with disabilities
Selecting a Dynamic Simulation Modeling Method for Health Care Delivery Research—Part 2: Report of the ISPOR Dynamic Simulation Modeling Emerging Good Practices Task Force
In a previous report, the ISPOR Task Force on Dynamic Simulation Modeling Applications in Health Care Delivery Research Emerging Good Practices introduced the fundamentals of dynamic simulation modeling and identified the types of health care delivery problems for which dynamic simulation modeling can be used more effectively than other modeling methods. The hierarchical relationship between the health care delivery system, providers, patients, and other stakeholders exhibits a level of complexity that ought to be captured using dynamic simulation modeling methods. As a tool to help researchers decide whether dynamic simulation modeling is an appropriate method for modeling the effects of an intervention on a health care system, we presented the System, Interactions, Multilevel, Understanding, Loops, Agents, Time, Emergence (SIMULATE) checklist consisting of eight elements. This report builds on the previous work, systematically comparing each of the three most commonly used dynamic simulation modeling methods—system dynamics, discrete-event simulation, and agent-based modeling. We review criteria for selecting the most suitable method depending on 1) the purpose—type of problem and research questions being investigated, 2) the object—scope of the model, and 3) the method to model the object to achieve the purpose. Finally, we provide guidance for emerging good practices for dynamic simulation modeling in the health sector, covering all aspects, from the engagement of decision makers in the model design through model maintenance and upkeep. We conclude by providing some recommendations about the application of these methods to add value to informed decision making, with an emphasis on stakeholder engagement, starting with the problem definition. Finally, we identify areas in which further methodological development will likely occur given the growing “volume, velocity and variety” and availability of “big data” to provide empirical evidence and techniques such as machine learning for parameter estimation in dynamic simulation models. Upon reviewing this report in addition to using the SIMULATE checklist, the readers should be able to identify whether dynamic simulation modeling methods are appropriate to address the problem at hand and to recognize the differences of these methods from those of other, more traditional modeling approaches such as Markov models and decision trees. This report provides an overview of these modeling methods and examples of health care system problems in which such methods have been useful. The primary aim of the report was to aid decisions as to whether these simulation methods are appropriate to address specific health systems problems. The report directs readers to other resources for further education on these individual modeling methods for system interventions in the emerging field of health care delivery science and implementation
Applying dynamic simulation modeling methods in health care delivery research - the SIMULATE checklist: Report of the ISPOR simulation modeling emerging good practices task force
Health care delivery systems are inherently complex, consisting of multiple tiers of interdependent subsystems and processes that are adaptive to changes in the environment and behave in a nonlinear fashion. Traditional health technology assessment and modeling methods often neglect the wider health system impacts that can be critical for achieving desired health system goals and are often of limited usefulness when applied to complex health systems. Researchers and health care decision makers can either underestimate or fail to consider the interactions among the people, processes, technology, and facility designs. Health care delivery system interventions need to incorporate the dynamics and complexities of the health care system context in which the intervention is delivered. This report provides an overview of common dynamic simulation modeling methods and examples of health care system interventions in which such methods could be useful. Three dynamic simulation modeling methods are presented to evaluate system interventions for health care delivery: system dynamics, discrete event simulation, and agent-based modeling. In contrast to conventional evaluations, a dynamic systems approach incorporates the complexity of the system and anticipates the upstream and downstream consequences of changes in complex health care delivery systems. This report assists researchers and decision makers in deciding whether these simulation methods are appropriate to address specific health system problems through an eight-point checklist referred to as the SIMULATE (System, Interactions, Multilevel, Understanding, Loops, Agents, Time, Emergence) tool. It is a primer for researchers and decision makers working in health care delivery and implementation sciences who face complex challenges in delivering effective and efficient care that can be addressed with system interventions. On reviewing this report, the readers should be able to identify whether these simulation modeling methods are appropriate to answer the problem they are addressing and to recognize the differences of these methods from other modeling approaches used typically in health technology assessment applications