3,815 research outputs found

    Methods for the identification of material parameters in distributed models for flexible structures

    Get PDF
    Theoretical and numerical results are presented for inverse problems involving estimation of spatially varying parameters such as stiffness and damping in distributed models for elastic structures such as Euler-Bernoulli beams. An outline of algorithms used and a summary of computational experiences are presented

    Quantum and Classical in Adiabatic Computation

    Get PDF
    Adiabatic transport provides a powerful way to manipulate quantum states. By preparing a system in a readily initialised state and then slowly changing its Hamiltonian, one may achieve quantum states that would otherwise be inaccessible. Moreover, a judicious choice of final Hamiltonian whose groundstate encodes the solution to a problem allows adiabatic transport to be used for universal quantum computation. However, the dephasing effects of the environment limit the quantum correlations that an open system can support and degrade the power of such adiabatic computation. We quantify this effect by allowing the system to evolve over a restricted set of quantum states, providing a link between physically inspired classical optimisation algorithms and quantum adiabatic optimisation. This new perspective allows us to develop benchmarks to bound the quantum correlations harnessed by an adiabatic computation. We apply these to the D-Wave Vesuvius machine with revealing - though inconclusive - results

    Digging supplementary buried channels: investigating the notch architecture within the CCD pixels on ESA's Gaia satellite

    Get PDF
    The European Space Agency (ESA) Gaia satellite has 106 CCD image sensors which will suffer from increased charge transfer inefficiency (CTI) as a result of radiation damage. To aid the mitigation at low signal levels, the CCD design includes Supplementary Buried Channels (SBCs, otherwise known as `notches') within each CCD column. We present the largest published sample of Gaia CCD SBC Full Well Capacity (FWC) laboratory measurements and simulations based on 13 devices. We find that Gaia CCDs manufactured post-2004 have SBCs with FWCs in the upper half of each CCD that are systematically smaller by two orders of magnitude (<50 electrons) compared to those manufactured pre-2004 (thousands of electrons). Gaia's faint star (13 < G < 20 mag) astrometric performance predictions by Prod'homme et al. and Holl et al. use pre-2004 SBC FWCs as inputs to their simulations. However, all the CCDs already integrated onto the satellite for the 2013 launch are post-2004. SBC FWC measurements are not available for one of our five post-2004 CCDs but the fact it meets Gaia's image location requirements suggests it has SBC FWCs similar to pre-2004. It is too late to measure the SBC FWCs onboard the satellite and it is not possible to theoretically predict them. Gaia's faint star astrometric performance predictions depend on knowledge of the onboard SBC FWCs but as these are currently unavailable, it is not known how representative of the whole focal plane the current predictions are. Therefore, we suggest Gaia's initial in-orbit calibrations should include measurement of the onboard SBC FWCs. We present a potential method to do this. Faint star astrometric performance predictions based on onboard SBC FWCs at the start of the mission would allow satellite operating conditions or CTI software mitigation to be further optimised to improve the scientific return of Gaia.Comment: Accepted for publication in MNRAS, 16 pages, 19 figure

    Forest management and wildfire risk in inland northwest

    Get PDF
    This brief reports the results of a mail survey of forest landowners in northeastern Oregon conducted in the fall of 2012 by the Communities and Forests in Oregon (CAFOR) Project at the University of Colorado and the University of New Hampshire in cooperation with Oregon State University College of Forestry Extension. The mail survey--a follow-up to a telephone survey conducted for the counties of Baker, Union, and Wallowa in the fall of 2011 -was administered to understand who constituted forest landowners in these three coun¬ties and their perceptions about forest management on both public and private land, as well as risks to forests in the area and the actions they have taken to reduce those risks. The respondents indicated that they perceive wildfire as the greatest threat to their lands, and they consider cooperation with neighbors as very or extremely important for land management. Forest landowners believe public lands are managed poorly and see a greater risk of wildfire occurring on neighboring public land than on their own land. Their opinions on land management are not strongly related to background factors or ideology (for example, gender, age, political party, wealth) but may be heavily influenced by personal experience with wildfire

    Characterizing Atacama B-mode Search Detectors with a Half-Wave Plate

    Full text link
    The Atacama B-Mode Search (ABS) instrument is a cryogenic (\sim10 K) crossed-Dragone telescope located at an elevation of 5190 m in the Atacama Desert in Chile that observed for three seasons between February 2012 and October 2014. ABS observed the Cosmic Microwave Background (CMB) at large angular scales (40<<50040<\ell<500) to limit the B-mode polarization spectrum around the primordial B-mode peak from inflationary gravity waves at 100\ell \sim100. The ABS focal plane consists of 480 transition-edge sensor (TES) bolometers. They are coupled to orthogonal polarizations from a planar ortho-mode transducer (OMT) and observe at 145 GHz. ABS employs an ambient-temperature, rapidly rotating half-wave plate (HWP) to mitigate systematic effects and move the signal band away from atmospheric 1/f1/f noise, allowing for the recovery of large angular scales. We discuss how the signal at the second harmonic of the HWP rotation frequency can be used for data selection and for monitoring the detector responsivities.Comment: 7 pages, 3 figures, conference proceedings submitted to the Journal of Low Temperature Detector

    Shift Towards P Limitation with N Deposition?

    Get PDF
    Atmospheric nitrogen (N) deposition is altering biogeochemical cycling in forests and interconnected lakes of the northeastern US, and may shift nutrient limitation from N toward other essential elements, such as phosphorus (P). Whether this shift is occurring relative to N deposition gradients across the northeastern US has not been investigated. We used datasets for the northeastern US and the Adirondack sub-region to evaluate whether P limitation is increasing where N deposition is high at two geographic scales, based on N:P mass ratios. Using a model- selection approach, we determined that foliar N for dominant tree species and lake dissolved inorganic N (DIN) increased coincident with increasing N deposition, independent of relationships between foliar N or lake DIN and precipitation or temperature. Foliar P also increased with N deposition across the northeastern US for seven of eight deciduous species, but changed less across the Adirondacks. Foliar N:P therefore declined at the highest levels of N deposition for most deciduous species across the region (remaining nearly constant for most conifers and increasing only for black cherry and hemlock), but increased across all species in the Adirondacks. Ratios between DIN and total P (DIN:TP) in lakes were unrelated to N deposition regionally but increased across the Adirondacks. Thus, nutrient limitation patterns shifted from N toward P for dominant trees, and further toward P for predominantly P-limited lakes, at the sub-regional but not regional scale. For the northeastern US overall, accumulated N deposition may be insufficient to drive nutrient limitation from N toward P; alternatively, elements other than P (e.g., calcium, magnesium) may become limiting as N accumulates. The consistent Adirondack foliar and lake response could provide early indication of shifts toward P limitation within the northeastern US, and together with regional patterns, suggests that foliar chemistry could be a predictor of lake chemistry in the context of N deposition across the region

    Self-forces on extended bodies in electrodynamics

    Full text link
    In this paper, we study the bulk motion of a classical extended charge in flat spacetime. A formalism developed by W. G. Dixon is used to determine how the details of such a particle's internal structure influence its equations of motion. We place essentially no restrictions (other than boundedness) on the shape of the charge, and allow for inhomogeneity, internal currents, elasticity, and spin. Even if the angular momentum remains small, many such systems are found to be affected by large self-interaction effects beyond the standard Lorentz-Dirac force. These are particularly significant if the particle's charge density fails to be much greater than its 3-current density (or vice versa) in the center-of-mass frame. Additional terms also arise in the equations of motion if the dipole moment is too large, and when the `center-of-electromagnetic mass' is far from the `center-of-bare mass' (roughly speaking). These conditions are often quite restrictive. General equations of motion were also derived under the assumption that the particle can only interact with the radiative component of its self-field. These are much simpler than the equations derived using the full retarded self-field; as are the conditions required to recover the Lorentz-Dirac equation.Comment: 30 pages; significantly improved presentation; accepted for publication in Phys. Rev.

    Phaselocked patterns and amplitude death in a ring of delay coupled limit cycle oscillators

    Full text link
    We study the existence and stability of phaselocked patterns and amplitude death states in a closed chain of delay coupled identical limit cycle oscillators that are near a supercritical Hopf bifurcation. The coupling is limited to nearest neighbors and is linear. We analyze a model set of discrete dynamical equations using the method of plane waves. The resultant dispersion relation, which is valid for any arbitrary number of oscillators, displays important differences from similar relations obtained from continuum models. We discuss the general characteristics of the equilibrium states including their dependencies on various system parameters. We next carry out a detailed linear stability investigation of these states in order to delineate their actual existence regions and to determine their parametric dependence on time delay. Time delay is found to expand the range of possible phaselocked patterns and to contribute favorably toward their stability. The amplitude death state is studied in the parameter space of time delay and coupling strength. It is shown that death island regions can exist for any number of oscillators N in the presence of finite time delay. A particularly interesting result is that the size of an island is independent of N when N is even but is a decreasing function of N when N is odd.Comment: 23 pages, 12 figures (3 of the figures in PNG format, separately from TeX); minor additions; typos correcte

    GPR56 Plays Varying Roles in Endogenous Cancer Progression

    Get PDF
    2011 March 29GPR56, a non-classical adhesion receptor, was previously reported to suppress tumor growth and metastasis in xenograft models using human melanoma cell lines. To understand whether GPR56 plays similar roles in the development of endogenous tumors, we analyzed cancer progression in Gpr56 [superscript −/−] mice using a variety of transgenic cancer models. Our results showed that GPR56 suppressed prostate cancer progression in the TRAMP model on a mixed genetic background, similar to its roles in progression of melanoma xenografts. However, its roles in other cancer types appeared to be complex. It had marginal effects on tumor onset of mammary tumors in the MMTV–PyMT model, but had no effects on subsequent tumor progression in either the MMTV–PyMT mice or the melanoma model, Ink4a/Arf [superscript −/−] tyr-Hras. These results indicate diverse roles of GPR56 in cancer progression and provide the first genetic evidence for the involvement of an adhesion GPCR in endogenous cancer development
    corecore