5,108 research outputs found

    Parameter identification in continuum models

    Get PDF
    Approximation techniques for use in numerical schemes for estimating spatially varying coefficients in continuum models such as those for Euler-Bernoulli beams are discussed. The techniques are based on quintic spline state approximations and cubic spline parameter approximations. Both theoretical and numerical results are presented

    Methods for the identification of material parameters in distributed models for flexible structures

    Get PDF
    Theoretical and numerical results are presented for inverse problems involving estimation of spatially varying parameters such as stiffness and damping in distributed models for elastic structures such as Euler-Bernoulli beams. An outline of algorithms used and a summary of computational experiences are presented

    Travelling waves in a drifting flux lattice

    Get PDF
    Starting from the time-dependent Ginzburg-Landau (TDGL) equations for a type II superconductor, we derive the equations of motion for the displacement field of a moving vortex lattice without inertia or pinning. We show that it is linearly stable and, surprisingly, that it supports wavelike long-wavelength excitations arising not from inertia or elasticity but from the strain-dependent mobility of the moving lattice. It should be possible to image these waves, whose speeds are a few \mu m/s, using fast scanning tunnelling microscopy.Comment: 4 pages, revtex, 2 .eps figures imbedded in paper, title shortened, minor textual change

    Perovskite Film Formation for Solar Cell Absorbers: Effects of Substrate Modification

    Get PDF
    As perovskite solar cell efficiencies have risen rapidly, practical constraints have made durability a critical concern. Whereas much attention has been paid to the development of the perovskite absorber layer, the charge transport layers can also be engineered to better the performance and stability of the device. This work uses the molecular modifier bromopropyltrimethoxysilane (BPTMS) to alter the interface between indium tin oxide (ITO, a common thin film solar cell transparent electrode) and methylammonium lead iodide (MAPbI3, a common perovskite absorber) to improve the morphology and stability of the perovskite absorber film. The substrate, molecular modifier, and perovskite film were characterized via contact angle measurements, spectroscopic ellipsometry, and scanning electron microscopy. It was determined that the absorber film morphology and stability of the stack are sensitive to both the underlying substrate and the BPTMS

    Dendritic cells are the principal cells in mouse spleen bearing immunogenic fragments of foreign proteins

    Get PDF
    We monitored the APC function of cells taken from the spleen and peritoneal cavity of mice that had been given protein antigens via the intravenous or intraperitoneal routes. Using the mAb 33D1 and N418 to negatively and positively select dendritic cells, we obtained evidence that dendritic cells are the main cell type in spleen that carries the protein in a form that is immunogenic for antigen-specific T cells. In vivo pulsed macrophages were not immunogenic and did not appear capable of transferring peptide fragments to dendritic cells

    Dendritic cells are the principal cell in mouse spleen bearing immunogenic fragments of foreign proteins

    Get PDF
    Crowley, M.T., Inaba, K., and Steinman, R.M. Dendritic cells are the principal cell in mouse spleen bearing immunogenic fragments of foreign proteins. J. Exp. Med. 172: 383-386, 1990https://digitalcommons.rockefeller.edu/historical-scientific-reports/1026/thumbnail.jp

    Digging supplementary buried channels: investigating the notch architecture within the CCD pixels on ESA's Gaia satellite

    Get PDF
    The European Space Agency (ESA) Gaia satellite has 106 CCD image sensors which will suffer from increased charge transfer inefficiency (CTI) as a result of radiation damage. To aid the mitigation at low signal levels, the CCD design includes Supplementary Buried Channels (SBCs, otherwise known as `notches') within each CCD column. We present the largest published sample of Gaia CCD SBC Full Well Capacity (FWC) laboratory measurements and simulations based on 13 devices. We find that Gaia CCDs manufactured post-2004 have SBCs with FWCs in the upper half of each CCD that are systematically smaller by two orders of magnitude (<50 electrons) compared to those manufactured pre-2004 (thousands of electrons). Gaia's faint star (13 < G < 20 mag) astrometric performance predictions by Prod'homme et al. and Holl et al. use pre-2004 SBC FWCs as inputs to their simulations. However, all the CCDs already integrated onto the satellite for the 2013 launch are post-2004. SBC FWC measurements are not available for one of our five post-2004 CCDs but the fact it meets Gaia's image location requirements suggests it has SBC FWCs similar to pre-2004. It is too late to measure the SBC FWCs onboard the satellite and it is not possible to theoretically predict them. Gaia's faint star astrometric performance predictions depend on knowledge of the onboard SBC FWCs but as these are currently unavailable, it is not known how representative of the whole focal plane the current predictions are. Therefore, we suggest Gaia's initial in-orbit calibrations should include measurement of the onboard SBC FWCs. We present a potential method to do this. Faint star astrometric performance predictions based on onboard SBC FWCs at the start of the mission would allow satellite operating conditions or CTI software mitigation to be further optimised to improve the scientific return of Gaia.Comment: Accepted for publication in MNRAS, 16 pages, 19 figure

    Cyclaneusma minus - A molecular characterisation

    Full text link
    corecore