2,175 research outputs found
Measurement of Parity Violation in the Early Universe using Gravitational-wave Detectors
A stochastic gravitational-wave background (SGWB) is expected to arise from
the superposition of many independent and unresolved gravitational-wave
signals, of either cosmological or astrophysical origin. Some cosmological
models (characterized, for instance, by a pseudo-scalar inflaton, or by some
modification of gravity) break parity, leading to a polarized SGWB. We present
a new technique to measure this parity violation, which we then apply to the
recent results from LIGO to produce the first upper limit on parity violation
in the SGWB, assuming a generic power-law SGWB spectrum across the LIGO
sensitive frequency region. We also estimate sensitivity to parity violation of
the future generations of gravitational-wave detectors, both for a power-law
spectrum and for a model of axion inflation. This technique offers a new way of
differentiating between the cosmological and astrophysical sources of the
isotropic SGWB, as astrophysical sources are not expected to produce a
polarized SGWB.Comment: 5 pages, 2 figures, 1 tabl
Registration of retinal images from Public Health by minimising an error between vessels using an affine model with radial distortions
In order to estimate a registration model of eye fundus images made of an
affinity and two radial distortions, we introduce an estimation criterion based
on an error between the vessels. In [1], we estimated this model by minimising
the error between characteristics points. In this paper, the detected vessels
are selected using the circle and ellipse equations of the overlap area
boundaries deduced from our model. Our method successfully registers 96 % of
the 271 pairs in a Public Health dataset acquired mostly with different
cameras. This is better than our previous method [1] and better than three
other state-of-the-art methods. On a publicly available dataset, ours still
better register the images than the reference method
A Solution to the Galactic Foreground Problem for LISA
Low frequency gravitational wave detectors, such as the Laser Interferometer
Space Antenna (LISA), will have to contend with large foregrounds produced by
millions of compact galactic binaries in our galaxy. While these galactic
signals are interesting in their own right, the unresolved component can
obscure other sources. The science yield for the LISA mission can be improved
if the brighter and more isolated foreground sources can be identified and
regressed from the data. Since the signals overlap with one another we are
faced with a ``cocktail party'' problem of picking out individual conversations
in a crowded room. Here we present and implement an end-to-end solution to the
galactic foreground problem that is able to resolve tens of thousands of
sources from across the LISA band. Our algorithm employs a variant of the
Markov Chain Monte Carlo (MCMC) method, which we call the Blocked Annealed
Metropolis-Hastings (BAM) algorithm. Following a description of the algorithm
and its implementation, we give several examples ranging from searches for a
single source to searches for hundreds of overlapping sources. Our examples
include data sets from the first round of Mock LISA Data Challenges.Comment: 19 pages, 27 figure
The role of fingerprints in the coding of tactile information probed with a biomimetic sensor
In humans, the tactile perception of fine textures (spatial scale <200
micrometers) is mediated by skin vibrations generated as the finger scans the
surface. To establish the relationship between texture characteristics and
subcutaneous vibrations, a biomimetic tactile sensor has been designed whose
dimensions match those of the fingertip. When the sensor surface is patterned
with parallel ridges mimicking the fingerprints, the spectrum of vibrations
elicited by randomly textured substrates is dominated by one frequency set by
the ratio of the scanning speed to the interridge distance. For human touch,
this frequency falls within the optimal range of sensitivity of Pacinian
afferents, which mediate the coding of fine textures. Thus, fingerprints may
perform spectral selection and amplification of tactile information that
facilitate its processing by specific mechanoreceptors.Comment: 25 pages, 11 figures, article + supporting materia
Observed Limits on Charge Exchange Contributions to the Diffuse X-ray Background
We present a high resolution spectrum of the diffuse X-ray background from
0.1 to 1 keV for a ~1 region of the sky centered at l=90, b=+60 using a
36-pixel array of microcalorimeters flown on a sounding rocket. With an energy
resolution of 11 eV FWHM below 1 keV, the spectrum's observed line ratios help
separate charge exchange contributions originating within the heliosphere from
thermal emission of hot gas in the interstellar medium. The X-ray sensitivity
below 1 keV was reduced by about a factor of four from contamination that
occurred early in the flight, limiting the significance of the results. The
observed centroid of helium-like O VII is 568+2-3 eV at 90% confidence. Since
the centroid expected for thermal emission is 568.4 eV while for charge
exchange is 564.2 eV, thermal emission appears to dominate for this line
complex, consistent with much of the high-latitude O VII emission originating
in 2-3 x 10^6 K gas in the Galactic halo. On the other hand, the observed ratio
of C VI Ly gamma to Ly alpha is 0.3+-0.2. The expected ratios are 0.04 for
thermal emission and 0.24 for charge exchange, indicating that charge exchange
must contribute strongly to this line and therefore potentially to the rest of
the ROSAT R12 band usually associated with 10^6 K emission from the Local Hot
Bubble. The limited statistics of this experiment and systematic uncertainties
due to the contamination require only >32% thermal emission for O VII and >20%
from charge exchange for C VI at the 90% confidence level. An experimental gold
coating on the silicon substrate of the array greatly reduced extraneous
signals induced on nearby pixels from cosmic rays passing through the
substrate, reducing the triggered event rate by a factor of 15 from a previous
flight of the instrument.Comment: 14 pages, 7 figures, to be published in Ap
Gravitational waves from Sco X-1: A comparison of search methods and prospects for detection with advanced detectors
The low-mass X-ray binary Scorpius X-1 (Sco X-1) is potentially the most
luminous source of continuous gravitational-wave radiation for interferometers
such as LIGO and Virgo. For low-mass X-ray binaries this radiation would be
sustained by active accretion of matter from its binary companion. With the
Advanced Detector Era fast approaching, work is underway to develop an array of
robust tools for maximizing the science and detection potential of Sco X-1. We
describe the plans and progress of a project designed to compare the numerous
independent search algorithms currently available. We employ a mock-data
challenge in which the search pipelines are tested for their relative
proficiencies in parameter estimation, computational efficiency, robust- ness,
and most importantly, search sensitivity. The mock-data challenge data contains
an ensemble of 50 Scorpius X-1 (Sco X-1) type signals, simulated within a
frequency band of 50-1500 Hz. Simulated detector noise was generated assuming
the expected best strain sensitivity of Advanced LIGO and Advanced VIRGO ( Hz). A distribution of signal amplitudes was then
chosen so as to allow a useful comparison of search methodologies. A factor of
2 in strain separates the quietest detected signal, at
strain, from the torque-balance limit at a spin frequency of 300 Hz, although
this limit could range from (25 Hz) to (750 Hz) depending on the unknown frequency of Sco X-1. With future
improvements to the search algorithms and using advanced detector data, our
expectations for probing below the theoretical torque-balance strain limit are
optimistic.Comment: 33 pages, 11 figure
Recommended from our members
DISSOLUTION OF FISSILE MATERIALS CONTAINING TANTALUM METAL
The dissolution of composite materials containing plutonium (Pu) and tantalum (Ta) metals is currently performed in Phase I of the HB-Line facility. The conditions for the present flowsheet are the dissolution of 500 g of Pu metal in the 15 L dissolver using a 4 M nitric acid (HNO{sub 3}) solution containing 0.2 M potassium fluoride (KF) at 95 C for 4-6 h.[1] The Ta metal, which is essentially insoluble in HNO{sub 3}/fluoride solutions, is rinsed with process water to remove residual acid, and then burned to destroy classified information. During the initial dissolution campaign, the total mass of Pu and Ta in the dissolver charge was limited to nominally 300 g. The reduced amount of Pu in the dissolver charge coupled with significant evaporation of solution during processing of several dissolver charges resulted in the precipitation of a fluoride salt contain Pu. Dissolution of the salt required the addition of aluminum nitrate (Al(NO{sub 3}){sub 3}) and a subsequent undesired 4 h heating cycle. As a result of this issue, HB-Line Engineering requested the Savannah River National Laboratory (SRNL) to optimize the dissolution flowsheet to reduce the cycle time, reduce the risk of precipitating solids, and obtain hydrogen (H{sub 2}) generation data at lower fluoride concentrations.[2] Using samples of the Pu/Ta composite material, we performed three experiments to demonstrate the dissolution of the Pu metal using HNO{sub 3} solutions containing 0.15 and 0.175 M KF. When 0.15 M KF was used in the dissolving solution, 95.5% of the Pu in the sample dissolved in approximately 6 h. The undissolved material included a small amount of Pu metal and plutonium oxide (PuO{sub 2}) solids. Complete dissolution of the metal would have likely occurred if the dissolution time had been extended. This assumption is based on the steady increase in the Pu concentration observed during the last several hours of the experiment. We attribute the formation of PuO{sub 2} to the complexation of fluoride by the Pu. The fluoride became unavailable to catalyze the dissolution of PuO{sub 2} as it formed on the surface of the metal. The mass of Pu dissolved is equivalent to the dissolution of 343 g of Pu in the HB-Line dissolvers. In the initial experiment with 0.175 M KF in the solution, we achieved complete dissolution of the Pu in 6 h. The mass of Pu dissolved scales to the dissolution of 358 g of Pu in the HB-Line dissolvers. The second experiment using 0.175 M KF was terminated after approximately 6 h following the dissolution of 92.7% of the Pu in the sample; however, dissolution of additional Pu was severely limited due to the slow dissolution rate observed beyond approximately 4 h. A small amount of PuO{sub 2} was also produced in the solution. The slow rate of dissolution was attributed to the diminishing surface area of the Pu and a reduction in the fluoride activity due to complexation with Pu. Given time (>4 h), the Pu metal may have dissolved using the original solution or a significant portion may have oxidized to PuO{sub 2}. If the metal oxidized to PuO{sub 2}, we expect little of the material would have dissolved due to the fluoride complexation and the low HNO{sub 3} concentration. The mass of Pu dissolved in the second experiment scales to the dissolution of 309 g of Pu in the HB-Line dissolvers. Based on the data from the Pu/Ta dissolution experiments we recommend the use of 4 M HNO{sub 3} containing 0.175 M KF for the dissolution of 300 g of Pu metal in the 15 L HB-Line dissolver. A dissolution temperature of nominally 95 C should allow for essentially complete dissolution of the metal in 6 h. Although the H{sub 2} concentration in the offgas from the experiments was at or below the detection limit of the gas chromatograph (GC) used in these experiments, small concentrations (<3 vol %) of H{sub 2} are typically produced in the offgas during Pu metal dissolutions. Therefore, appropriate controls must be established to address the small H{sub 3} generation rates in accordance with this work and the earlier flowsheet demonstrated for Pu metal.[3
Recommended from our members
DISSOLUTION OF FB-LINE METAL RESIDUES CONTAINING BERYLLIUM IN H-CANYON
Scrap materials containing plutonium (Pu) metal from FB-Line vaults are currently being dissolved in HB-Line for subsequent disposition through the H-Canyon facility. However, milestone and schedule commitments may require the dissolution of material containing Pu and beryllium (Be) metals in H-Canyon. To support this option, a flowsheet for dissolving Pu and Be metals in H-Canyon was demonstrated using a 4 M nitric acid (HNO{sub 3}) solution containing 0.3 M fluoride (F{sup -}). The F{sup -} was added as calcium fluoride (CaF{sub 2}). The dissolving solution also contained 2.5 g/L boron (B), a nuclear safety contingency for the H-Canyon dissolver, and 3.9 g/L iron (Fe) to represent the dissolution of carbon steel cans. The solution was heated to 90-95 C during the 8 h dissolution cycle. Dissolution of the Be metal appeared to begin as soon as the samples were added to the dissolver. Clear, colorless bubbles generated on the surface were observed and were attributed primarily to the generation of hydrogen (H{sub 2}) gas. The generation of nitrogen dioxide (NO{sub 2}) gas was also evident from the color of the solution. Essentially all of the Pu and Be dissolved during the first hour of the dissolution as the solution was heated to 90-95 C. The amount of residual solids collected following the dissolution was < 2% of the total metal charged to the dissolver. Examination of residual solids by scanning electron microscopy (SEM) showed that the largest dimension of the particles was less than 50 {micro}m with particles of smaller dimensions being more abundant. Energy dispersive spectra from spots on some of the particles showed the solids consisted of a small amount of undissolved material, corrosion products from the glassware, and dried salts from the dissolving solution
Gas damping force noise on a macroscopic test body in an infinite gas reservoir
We present a simple analysis of the force noise associated with the
mechanical damping of the motion of a test body surrounded by a large volume of
rarefied gas. The calculation is performed considering the momentum imparted by
inelastic collisions against the sides of a cubic test mass, and for other
geometries for which the force noise could be an experimental limitation. In
addition to arriving at an accurated estimate, by two alternative methods, we
discuss the limits of the applicability of this analysis to realistic
experimental configurations in which a test body is surrounded by residual gas
inside an enclosure that is only slightly larger than the test body itself.Comment: 8 pages. updated with correct translational damping coefficient for
cylinder on axis. added cylinder orthogonal to symmetry axis, force and
torque. slightly edited throughou
LISA Data Analysis using MCMC methods
The Laser Interferometer Space Antenna (LISA) is expected to simultaneously
detect many thousands of low frequency gravitational wave signals. This
presents a data analysis challenge that is very different to the one
encountered in ground based gravitational wave astronomy. LISA data analysis
requires the identification of individual signals from a data stream containing
an unknown number of overlapping signals. Because of the signal overlaps, a
global fit to all the signals has to be performed in order to avoid biasing the
solution. However, performing such a global fit requires the exploration of an
enormous parameter space with a dimension upwards of 50,000. Markov Chain Monte
Carlo (MCMC) methods offer a very promising solution to the LISA data analysis
problem. MCMC algorithms are able to efficiently explore large parameter
spaces, simultaneously providing parameter estimates, error analyses and even
model selection. Here we present the first application of MCMC methods to
simulated LISA data and demonstrate the great potential of the MCMC approach.
Our implementation uses a generalized F-statistic to evaluate the likelihoods,
and simulated annealing to speed convergence of the Markov chains. As a final
step we super-cool the chains to extract maximum likelihood estimates, and
estimates of the Bayes factors for competing models. We find that the MCMC
approach is able to correctly identify the number of signals present, extract
the source parameters, and return error estimates consistent with Fisher
information matrix predictions.Comment: 14 pages, 7 figure
- …