115 research outputs found

    Kinetics of 99Tc speciation in aerobic soils

    Get PDF
    © 2019 The Authors Technetium-99 is a significant and long-lived component of spent nuclear fuel relevant to long-term assessments of radioactive waste disposal. Whilst 99Tc behaviour in poorly aerated environments is well known, the long-term bioavailability in aerobic soils following direct deposition or transport to the surface is less well understood. This work addresses two questions: (i) to what extent do soil properties control 99Tc kinetics in aerobic soils and (ii) over what experimental timescales must 99Tc kinetics be measured to make reliable long-term predictions of impact in the terrestrial environment? Soil microcosms spiked with 99TcO4− were incubated for 2.5 years and 99Tc transformations were periodically monitored by a sequential extraction, which enabled quantification of the reaction kinetics. Reduction in soluble 99Tc was slow and followed a double exponential kinetic model including a fast component enhanced by low pH, a slow component controlled by pH and organic matter, and a persistently soluble 99Tc fraction. Complexation with soil humus was key to the progressive immobilisation of 99Tc. Evidence for slow transfer to an unidentified ‘sink’ was found, with estimated decadal timeframes. Our data suggest that short-term experiments may not reliably predict long-term 99Tc solubility in soils with low to moderate organic matter contents

    Synthesis and structural characterization of a mimetic membrane-anchored prion protein

    Get PDF
    During pathogenesis of transmissible spongiform encephalopathies (TSEs) an abnormal form (PrPSc) of the host encoded prion protein (PrPC) accumulates in insoluble fibrils and plaques. The two forms of PrP appear to have identical covalent structures, but differ in secondary and tertiary structure. Both PrPC and PrPSc have glycosylphospatidylinositol (GPI) anchors through which the protein is tethered to cell membranes. Membrane attachment has been suggested to play a role in the conversion of PrPC to PrPSc, but the majority of in vitro studies of the function, structure, folding and stability of PrP use recombinant protein lacking the GPI anchor. In order to study the effects of membranes on the structure of PrP, we synthesized a GPI anchor mimetic (GPIm), which we have covalently coupled to a genetically engineered cysteine residue at the C-terminus of recombinant PrP. The lipid anchor places the protein at the same distance from the membrane as does the naturally occurring GPI anchor. We demonstrate that PrP coupled to GPIm (PrP-GPIm) inserts into model lipid membranes and that structural information can be obtained from this membrane-anchored PrP. We show that the structure of PrP-GPIm reconstituted in phosphatidylcholine and raft membranes resembles that of PrP, without a GPI anchor, in solution. The results provide experimental evidence in support of previous suggestions that NMR structures of soluble, anchor-free forms of PrP represent the structure of cellular, membrane-anchored PrP. The availability of a lipid-anchored construct of PrP provides a unique model to investigate the effects of different lipid environments on the structure and conversion mechanisms of PrP

    SNi from SN2: a front-face mechanism ‘synthase’ engineered from a retaining hydrolase

    Get PDF
    SNi or SNi-like mechanisms, in which leaving group departure and nucleophile approach occur on the same ‘front’ face, have been observed previously experimentally and computationally in both the chemical and enzymatic (glycosyltransferase) substitution reactions of α-glycosyl electrophiles. Given the availability of often energetically comparable competing pathways for substitution (SNi vs SN1 vs SN2) the precise modulation of this archetypal reaction type should be feasible. Here, we show that the drastic engineering of a protein that catalyzes substitution, a retaining β-glycosidase (from Sulfolobus solfataricus SSβG), apparently changes the mode of reaction from “SN2” to “SNi”. Destruction of the nucleophilic Glu387 of SSβG-WT through Glu387Tyr mutation (E387Y) created a catalyst (SSβG-E387Y) with lowered but clear transglycosylation substitution activity with activated substrates, altered substrate and reaction preferences and hence useful synthetic (‘synthase’) utility by virtue of its low hydrolytic activity with unactivated substrates. Strikingly, the catalyst still displayed retaining β stereoselectivity, despite lacking a suitable nucleophile; pH-activity profile, mechanism-based inactivators and mutational analyses suggest that SSβG-E387Y operates without either the use of nucleophile or general acid/base residues, consistent with a SNi or SNi-like mechanism. An x-ray structure of SSβG-E387Y and subsequent metadynamics simulation suggest recruitment of substrates aided by a π-sugar interaction with the introduced Tyr387 and reveal a QM/MM free energy landscape for the substitution reaction catalyzed by this unnatural enzyme similar to those of known natural, SNi-like glycosyltransferase (GT) enzymes. Proton flight from the putative hydroxyl nucleophile to the developing p-nitrophenoxide leaving group of the substituted molecule in the reactant complex creates a hydrogen bond that appears to crucially facilitate the mechanism, mimicking the natural mechanism of SNi-GTs. An oxocarbenium ion-pair minimum along the reaction pathway suggests a step-wise SNi-like DN*ANss rather than a concerted SNi DNAN mechanism. This first observation of a front face mechanism in a β-retaining glycosyl transfer enzyme highlights, not only that unusual SNi reaction pathways may be accessed through direct engineering of catalysts with suitable environments, but also suggests that ‘β-SNi’ reactions are also feasible for glycosyl transfer enzymes and the more widespread existence of SNi or SNi-like mechanism in nature

    A compilation of global bio-optical in situ data for ocean colour satellite applications – version three

    Get PDF
    A global in situ data set for validation of ocean colour products from the ESA Ocean Colour Climate Change Initiative (OC-CCI) is presented. This version of the compilation, starting in 1997, now extends to 2021, which is important for the validation of the most recent satellite optical sensors such as Sentinel 3B OLCI and NOAA-20 VIIRS. The data set comprises in situ observations of the following variables: spectral remote-sensing reflectance, concentration of chlorophyll-a, spectral inherent optical properties, spectral diffuse attenuation coefficient, and total suspended matter. Data were obtained from multi-project archives acquired via open internet services or from individual projects acquired directly from data providers. Methodologies were implemented for homogenization, quality control, and merging of all data. Minimal changes were made on the original data, other than conversion to a standard format, elimination of some points, after quality control and averaging of observations that were close in time and space. The result is a merged table available in text format. Overall, the size of the data set grew with 148 432 rows, with each row representing a unique station in space and time (cf. 136 250 rows in previous version; Valente et al., 2019). Observations of remote-sensing reflectance increased to 68 641 (cf. 59 781 in previous version; Valente et al., 2019). There was also a near tenfold increase in chlorophyll data since 2016. Metadata of each in situ measurement (original source, cruise or experiment, principal investigator) are included in the final table. By making the metadata available, provenance is better documented and it is also possible to analyse each set of data separately. The compiled data are available at https://doi.org/10.1594/PANGAEA.941318 (Valente et al., 2022)

    Efficient synthesis of methanesulphonate-derived lipid chains for attachment of proteins to lipid membranes

    No full text
    We have developed an easy and flexible synthetic methodology to obtain lipid chains containing methanothiosulfonate terminal groups with the aim to attach them to natural proteins as functional groups. There are many proteins found in nature that are modified by lipids, and this is a key part of their function. For example, the prion protein is attached to the plasma membrane via a glycosylphosphatidylinositol (GPI) anchor, and this protein is thought to be the causative agent in diseases such as bovine spongiform encephalopathy (BSE; mad cow disease) and the human equivalent Creutzfeldt-Jakob disease. However, production of large amounts of protein in bacteria results in proteins that lack these lipid modifications. The lipid chains containing methanothiosulfonate terminal groups that we have synthesized here can be attached to these proteins through the thiol contained in the side chain of the cysteine residue, which can be incorporated into the protein sequence at the desired position
    corecore