67 research outputs found

    Unexpectedly high prevalence of sarcoidosis in a representative U.S. Metropolitan population

    Get PDF
    SummaryThe prevalence of sarcoidosis in the United States is unknown, with estimates ranging widely from 1 to 40 per 100,000. We sought to determine the prevalence of sarcoidosis in our health system compared to other rare lung diseases and to further establish if the prevalence was changing over time. We interrogated the electronic medical records of all patients treated in our health system from 1995 to 2010 (1.48 million patients) using the common ICD9 codes for sarcoidosis (135), lung cancer (162), and several other lung diseases characterized, like sarcoidosis, as “rare lung diseases”. The patient demographic information (race, gender, age) was further analyzed to identify signature data patterns. The prevalence of sarcoidosis in our health system increased steadily from 164/100,000 in 1995 to 330/100,000 in 2010, and this trend could not be ascribed simply to changes in patient demographics or patient referral patterns. We further estimate that the prevalence of sarcoidosis exceeds 48 per 100,000 in Franklin County, Ohio, the demographic profile of which is nearly identical to that of the U.S. Sarcoidosis prevalence increased over time relative to lung cancer, a benchmark disease with stable disease prevalence, and exceeded that of other rare lung diseases. We postulate that the observed 2-fold increase in sarcoidosis disease prevalence in our health system is primarily related to improved detection and diagnostic approaches, and we conclude that the actual prevalence of sarcoidosis in central Ohio greatly exceeds current U.S. estimates

    Circulating exosomal microRNA expression patterns distinguish cardiac sarcoidosis from myocardial ischemia.

    Get PDF
    OBJECTIVE: Cardiac sarcoidosis is difficult to diagnose, often requiring expensive and inconvenient advanced imaging techniques. Circulating exosomes contain genetic material, such as microRNA (miRNA), that are derived from diseased tissues and may serve as potential disease-specific biomarkers. We thus sought to determine whether circulating exosome-derived miRNA expression patterns would distinguish cardiac sarcoidosis (CS) from acute myocardial infarction (AMI). METHODS: Plasma and serum samples conforming to CS, AMI or disease-free controls were procured from the Biologic Specimen and Data Repository Information Coordinating Center repository and National Jewish Health. Next generation sequencing (NGS) was performed on exosome-derived total RNA (n = 10 for each group), and miRNA expression levels were compared after normalization using housekeeping miRNA. Quality assurance measures excluded poor quality RNA samples. Differentially expressed (DE) miRNA patterns, based upon \u3e2-fold change (p \u3c 0.01), were established in CS compared to controls, and in CS compared to AMI. Relative expression of several DE-miRNA were validated by qRT-PCR. RESULTS: Despite the advanced age of the stored samples (~5-30 years), the quality of the exosome-derived miRNA was intact in ~88% of samples. Comparing plasma exosomal miRNA in CS versus controls, NGS yielded 18 DE transcripts (12 up-regulated, 6 down-regulated), including miRNA previously implicated in mechanisms of myocardial injury (miR-92, miR-21) and immune responses (miR-618, miR-27a). NGS further yielded 52 DE miRNA in serum exosomes from CS versus AMI: 5 up-regulated in CS; 47 up-regulated in AMI, including transcripts previously detected in AMI patients (miR-1-1, miR-133a, miR-208b, miR-423, miR-499). Five miRNAs with increased DE in CS included two isoforms of miR-624 and miR-144, previously reported as markers of cardiomyopathy. CONCLUSIONS: MiRNA patterns of exosomes derived from CS and AMI patients are distinct, suggesting that circulating exosomal miRNA patterns could serve as disease biomarkers. Further studies are required to establish their specificity relative to other cardiac disorders

    Monocyte distribution width enhances early sepsis detection in the emergency department beyond SIRS and qSOFA

    Get PDF
    BACKGROUND: The initial presentation of sepsis in the emergency department (ED) is difficult to distinguish from other acute illnesses based upon similar clinical presentations. A new blood parameter, a measurement of increased monocyte volume distribution width (MDW), may be used in combination with other clinical parameters to improve early sepsis detection. We sought to determine if MDW, when combined with other available clinical parameters at the time of ED presentation, improves the early detection of sepsis. METHODS: A retrospective analysis of prospectively collected clinical data available during the initial ED encounter of 2158 adult patients who were enrolled from emergency departments of three major academic centers, of which 385 fulfilled Sepsis-2 criteria, and 243 fulfilled Sepsis-3 criteria within 12 h of admission. Sepsis probabilities were determined based on MDW values, alone or in combination with components of systemic inflammatory response syndrome (SIRS) or quick sepsis-related organ failure assessment (qSOFA) score obtained during the initial patient presentation (i.e., within 2 h of ED admission). RESULTS: Abnormal MDW (\u3e 20.0) consistently increased sepsis probability, and normal MDW consistently reduced sepsis probability when used in combination with SIRS criteria (tachycardia, tachypnea, abnormal white blood count, or body temperature) or qSOFA criteria (tachypnea, altered mental status, but not hypotension). Overall, and regardless of other SIRS or qSOFA variables, MDW \u3e 20.0 (vs. MDW ≀ 20.0) at the time of the initial ED encounter was associated with an approximately 6-fold increase in the odds of Sepsis-2, and an approximately 4-fold increase in the odds of Sepsis-3. CONCLUSIONS: MDW improves the early detection of sepsis during the initial ED encounter and is complementary to SIRS and qSOFA parameters that are currently used for this purpose. This study supports the incorporation of MDW with other readily available clinical parameters during the initial ED encounter for the early detection of sepsis. TRIAL REGISTRATION: ClinicalTrials.gov, NCT03145428. First posted May 9, 2017. The first subjects were enrolled June 19, 2017, and the study completion date was January 26, 2018

    Leveraging in vitro and pharmacokinetic models to support bench to bedside investigation of XTMAB-16 as a novel pulmonary sarcoidosis treatment

    Get PDF
    Background: Sarcoidosis is a chronic, multisystem inflammatory disorder characterized by non-caseating epithelioid granulomas; infiltration of mononuclear cells; and destruction of microarchitecture in the skin, eye, heart, and central nervous system, and the lung in >90% of cases. XTMAB-16 is a chimeric anti-tumor necrosis factor alpha (TNFα) antibody, distinct from other anti-TNF antibodies based on its molecular structure. The efficacy of XTMAB-16 has not been clinically demonstrated, and it is still undergoing clinical development as a potential treatment for sarcoidosis. The current study demonstrates the activity of XTMAB-16 in a well-established in vitro sarcoidosis granuloma model, although XTMAB-16 is not yet approved by the United States Food and Drug Administration (FDA) for treatment of sarcoidosis, or any other disease.Objective: To provide data to guide safe and efficacious dose selection for the ongoing clinical development of XTMAB-16 as a potential treatment for sarcoidosis.Methods: First, XTMAB-16 activity was evaluated in an established in vitro model of granuloma formation using peripheral blood mononuclear cells from patients with active pulmonary sarcoidosis to determine a potentially efficacious dose range. Second, data obtained from the first-in-human study of XTMAB-16 (NCT04971395) were used to develop a population pharmacokinetic (PPK) model to characterize the pharmacokinetics (PK) of XTMAB-16. Model simulations were performed to evaluate the sources of PK variability and to predict interstitial lung exposure based on concentrations in the in vitro granuloma model.Results: XTMAB-16 dose levels of 2 and 4 mg/kg, once every 2 weeks (Q2W) or once every 4 weeks (Q4W) for up to 12 weeks, were supported by data from the non-clinical, in vitro secondary pharmacology; the Phase 1 clinical study; and the PPK model developed to guide dose level and frequency assumptions. XTMAB-16 inhibited granuloma formation and suppressed interleukin-1ÎČ (IL-1ÎČ) secretion in the in vitro granuloma model with a half maximal inhibitory concentration (IC50) of 5.2 and 3.5 Όg/mL, respectively. Interstitial lung concentrations on average, following 2 or 4 mg/kg administered Q2W or Q4W, are anticipated to exceed the in vitro IC50 concentrations.Conclusion: The data presented in this report provide a rationale for dose selection and support the continued clinical development of XTMAB-16 for patients with pulmonary sarcoidosis

    An In Silico Modeling Approach to Understanding the Dynamics of Sarcoidosis

    Get PDF
    BACKGROUND: Sarcoidosis is a polygenic disease with diverse phenotypic presentations characterized by an abnormal antigen-mediated Th1 type immune response. At present, progress towards understanding sarcoidosis disease mechanisms and the development of novel treatments is limited by constraints attendant to conducting human research in a rare disease in the absence of relevant animal models. We sought to develop a computational model to enhance our understanding of the pathological mechanisms of and predict potential treatments of sarcoidosis. METHODOLOGY/RESULTS: Based upon the literature, we developed a computational model of known interactions between essential immune cells (antigen-presenting macrophages, effector and regulatory T cells) and cytokine mediators (IL-2, TNFα, IFNγ) of granulomatous inflammation during sarcoidosis. The dynamics of these interactions are described by a set of ordinary differential equations. The model predicts bistable switching behavior which is consistent with normal (self-limited) and "sarcoidosis-like" (sustained) activation of the inflammatory components of the system following a single antigen challenge. By perturbing the influence of model components using inhibitors of the cytokine mediators, distinct clinically relevant disease phenotypes were represented. Finally, the model was shown to be useful for pre-clinical testing of therapies based upon molecular targets and dose-effect relationships. CONCLUSIONS/SIGNIFICANCE: Our work illustrates a dynamic computer simulation of granulomatous inflammation scenarios that is useful for the investigation of disease mechanisms and for pre-clinical therapeutic testing. In lieu of relevant in vitro or animal surrogates, our model may provide for the screening of potential therapies for specific sarcoidosis disease phenotypes in advance of expensive clinical trials

    Beryllium increases the CD14<sup>dim</sup>CD16+ subset in the lung of chronic beryllium disease

    Get PDF
    CD14dimCD16+ and CD14brightCD16+ cells, which compose a minor population of monocytes in human peripheral blood mononuclear cells (PBMC), have been implicated in several inflammatory diseases. The aim of this study was to investigate whether this phenotype was present as a subset of lung infiltrative alveolar macrophages (AMs) in the granulomatous lung disease, chronic beryllium disease (CBD). The monocytes subsets was determined from PBMC cells and bronchoalveolar lavage (BAL) cells from CBD, beryllium sensitized Non-smoker (BeS-NS) and healthy subjects (HS) using flow cytometry. The impact of smoking on the AMs cell phenotype was determined by using BAL cells from BeS smokers (BeS-S). In comparison with the other monocyte subpopulations, CD14dimCD16+ cells were at decreased frequency in PBMCs of both BeS-NS and CBD and showed higher HLA-DR expression, compared to HS. The AMs from CBD and BeS-NS demonstrated a CD14dimCD16+phenotype, while CD14brightCD16+ cells were found at increased frequency in AMs of BeS, compared to HS. Fresh AMs from BeS-NS and CBD demonstrated significantly greater CD16, CD40, CD86 and HLA-DR than HS and BeS-S. The expression of CD16 on AMs from both CBD and BeS-NS was downregulated significantly after 10ÎŒM BeSO4 stimulation. The phagocytic activity of AMs decreased after 10ÎŒM BeSO4 treatment in both BeS-NS and CBD, although was altered or reduced in HS and BeS-S. These results suggest that Be increases the CD14dimCD16+ subsets in the lung of CBD subjects. We speculate that Be-stimulates the compartmentalization of a more mature CD16+ macrophage phenotype and that in turn these macrophages are a source of Th1 cytokines and chemokines that perpetuate the Be immune response in CBD. The protective effect of cigarette smoking in BeS-S may be due to the low expression of co-stimulatory markers on AMs from smokers as well as the decreased phagocytic function

    High-resolution CT phenotypes in pulmonary sarcoidosis: a multinational Delphi consensus study

    Get PDF
    One view of sarcoidosis is that the term covers many different diseases. However, no classification framework exists for the future exploration of pathogenetic pathways, genetic or trigger predilections, patterns of lung function impairment, or treatment separations, or for the development of diagnostic algorithms or relevant outcome measures. We aimed to establish agreement on high-resolution CT (HRCT) phenotypic separations in sarcoidosis to anchor future CT research through a multinational two-round Delphi consensus process. Delphi participants included members of the Fleischner Society and the World Association of Sarcoidosis and other Granulomatous Disorders, as well as members' nominees. 146 individuals (98 chest physicians, 48 thoracic radiologists) from 28 countries took part, 144 of whom completed both Delphi rounds. After rating of 35 Delphi statements on a five-point Likert scale, consensus was achieved for 22 (63%) statements. There was 97% agreement on the existence of distinct HRCT phenotypes, with seven HRCT phenotypes that were categorised by participants as non-fibrotic or likely to be fibrotic. The international consensus reached in this Delphi exercise justifies the formulation of a CT classification as a basis for the possible definition of separate diseases. Further refinement of phenotypes with rapidly achievable CT studies is now needed to underpin the development of a formal classification of sarcoidosis
    • 

    corecore