151 research outputs found

    Comparison of chemical characteristics of 495 biomass burning plumes intercepted by the NASA DC-8 aircraft during the ARCTAS/CARB-2008 field campaign

    Get PDF
    This paper compares measurements of gaseous and particulate emissions from a wide range of biomass-burning plumes intercepted by the NASA DC-8 research aircraft during the three phases of the ARCTAS-2008 experiment: ARCTAS-A, based out of Fairbanks, Alaska, USA (3 April to 19 April 2008); ARCTAS-B based out of Cold Lake, Alberta, Canada (29 June to 13 July 2008); and ARCTAS-CARB, based out of Palmdale, California, USA (18 June to 24 June 2008). Approximately 500 smoke plumes from biomass burning emissions that varied in age from minutes to days were segregated by fire source region and urban emission influences. The normalized excess mixing ratios (NEMR) of gaseous (carbon dioxide, acetonitrile, hydrogen cyanide, toluene, benzene, methane, oxides of nitrogen and ozone) and fine aerosol particulate components (nitrate, sulfate, ammonium, chloride, organic aerosols and water soluble organic carbon) of these plumes were compared. A detailed statistical analysis of the different plume categories for different gaseous and aerosol species is presented in this paper. The comparison of NEMR values showed that CH4 concentrations were higher in air-masses that were influenced by urban emissions. Fresh biomass burning plumes mixed with urban emissions showed a higher degree of oxidative processing in comparison with fresh biomass burning only plumes. This was evident in higher concentrations of inorganic aerosol components such as sulfate, nitrate and ammonium, but not reflected in the organic components. Lower NOx NEMRs combined with high sulfate, nitrate and ammonium NEMRs in aerosols of plumes subject to long-range transport, when comparing all plume categories, provided evidence of advanced processing of these plumes

    A regional scale modeling analysis of aerosol and trace gas distributions over the eastern Pacific during the INTEX-B field campaign

    Get PDF
    The Sulfur Transport and dEposition Model (STEM) is applied to the analysis of observations obtained during the Intercontinental Chemical Transport Experiment-Phase B (INTEX-B), conducted over the eastern Pacific Ocean during spring 2006. Predicted trace gas and aerosol distributions over the Pacific are presented and discussed in terms of transport and source region contributions. Trace species distributions show a strong west (high) to east (low) gradient, with the bulk of the pollutant transport over the central Pacific occurring between similar to 20 degrees N and 50 degrees N in the 2-6 km altitude range. These distributions are evaluated in the eastern Pacific by comparison with the NASA DC-8 and NSF/NCAR C-130 airborne measurements along with observations from the Mt. Bachelor (MBO) surface site. Thirty different meteorological, trace gas and aerosol parameters are compared. In general the meteorological fields are better predicted than gas phase species, which in turn are better predicted than aerosol quantities. PAN is found to be significantly overpredicted over the eastern Pacific, which is attributed to uncertainties in the chemical reaction mechanisms used in current atmospheric chemistry models in general and to the specifically high PAN production in the SAPRC-99 mechanism used in the regional model. A systematic underprediction of the elevated sulfate layer in the eastern Pacific observed by the C-130 is another issue that is identified and discussed. Results from source region tagged CO simulations are used to estimate how the different source regions around the Pacific contribute to the trace gas species distributions. During this period the largest contributions were from China and from fires in South/Southeast and North Asia. For the C-130 flights, which operated off the coast of the Northwest US, the regional CO contributions range as follows: China (35%), South/Southeast Asia fires (35%), North America anthropogenic (20%), and North Asia fires (10%). The transport of pollution into the western US is studied at MBO and a variety of events with elevated Asian dust, and periods with contributions from China and fires from both Asia and North America are discussed. The role of heterogeneous chemistry on the composition over the eastern Pacific is also studied. The impacts of heterogeneous reactions at specific times can be significant, increasing sulfate and nitrate aerosol production and reducing gas phase nitric acid levels appreciably (~50%)

    Observations of heterogeneous reactions between Asian pollution and mineral dust over the Eastern North Pacific during INTEX-B

    Get PDF
    In-situ airborne measurements of trace gases, aerosol size distributions, chemistry and optical properties were conducted over Mexico and the Eastern North Pacific during MILAGRO and INTEX-B. Heterogeneous reactions between secondary aerosol precursor gases and mineral dust lead to sequestration of sulfur, nitrogen and chlorine in the supermicrometer particulate size range. Simultaneous measurements of aerosol size distributions and weak-acid soluble calcium result in an estimate of 11 wt% of CaCO_3 for Asian dust. During transport across the North Pacific, ~5–30% of the CaCO_3 is converted to CaSO_4 or Ca(NO_3)_2 with an additional ~4% consumed through reactions with HCl. The 1996 to 2008 record from the Mauna Loa Observatory confirm these findings, indicating that, on average, 19% of the CaCO_3 has reacted to form CaSO_4 and 7% has reacted to form Ca(NO_3)_2 and ~2% has reacted with HCl. In the nitrogen-oxide rich boundary layer near Mexico City up to 30% of the CaCO_3 has reacted to form Ca(NO_3)_2 while an additional 8% has reacted with HCl. These heterogeneous reactions can result in a ~3% increase in dust solubility which has an insignificant effect on their optical properties compared to their variability in-situ. However, competition between supermicrometer dust and submicrometer primary aerosol for condensing secondary aerosol species led to a 25% smaller number median diameter for the accumulation mode aerosol. A 10–25% reduction of accumulation mode number median diameter results in a 30–70% reduction in submicrometer light scattering at relative humidities in the 80–95% range. At 80% RH submicrometer light scattering is only reduced ~3% due to a higher mass fraction of hydrophobic refractory components in the dust-affected accumulation mode aerosol. Thus reducing the geometric mean diameter of the submicrometer aerosol has a much larger effect on aerosol optical properties than changes to the hygroscopic:hydrophobic mass fractions of the accumulation mode aerosol. In the presence of dust, nitric acid concentrations are reduced to 85% to 60–80% in the presence of dust. These observations support previous model studies which predict irreversible sequestration of reactive nitrogen species through heterogeneous reactions with mineral dust during long-range transport

    An analysis of fast photochemistry over high northern latitudes during spring and summer using in-situ observations from ARCTAS and TOPSE

    Get PDF
    Observations of chemical constituents and meteorological quantities obtained during the two Arctic phases of the airborne campaign ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites) are analyzed using an observationally constrained steady state box model. Measurements of OH and HO2 from the Penn State ATHOS instrument are compared to model predictions. Forty percent of OH measurements below 2 km are at the limit of detection during the spring phase (ARCTAS-A). While the median observed-to-calculated ratio is near one, both the scatter of observations and the model uncertainty for OH are at the magnitude of ambient values. During the summer phase (ARCTAS-B), model predictions of OH are biased low relative to observations and demonstrate a high sensitivity to the level of uncertainty in NO observations. Predictions of HO2 using observed CH2O and H2O2 as model constraints are up to a factor of two larger than observed. A temperature-dependent terminal loss rate of HO2 to aerosol recently proposed in the literature is shown to be insufficient to reconcile these differences. A comparison of ARCTAS-A to the high latitude springtime portion of the 2000 TOPSE campaign (Tropospheric Ozone Production about the Spring Equinox) shows similar meteorological and chemical environments with the exception of peroxides; observations of H2O2 during ARCTAS-A were 2.5 to 3 times larger than those during TOPSE. The cause of this difference in peroxides remains unresolved and has important implications for the Arctic HOx budget. Unconstrained model predictions for both phases indicate photochemistry alone is unable to simultaneously sustain observed levels of CH2O and H2O2; however when the model is constrained with observed CH2O, H2O2 predictions from a range of rainout parameterizations bracket its observations. A mechanism suitable to explain observed concentrations of CH2O is uncertain. Free tropospheric observations of acetaldehyde (CH3CHO) are 2–3 times larger than its predictions, though constraint of the model to those observations is sufficient to account for less than half of the deficit in predicted CH2O. The box model calculates gross O3 formation during spring to maximize from 1–4 km at 0.8 ppbv d−1, in agreement with estimates from TOPSE, and a gross production of 2–4 ppbv d−1 in the boundary layer and upper troposphere during summer. Use of the lower observed levels of HO2 in place of model predictions decreases the gross production by 25–50%. Net O3 production is near zero throughout the ARCTAS-A troposphere, and is 1–2 ppbv in the boundary layer and upper altitudes during ARCTAS-B

    Long-range pollution transport during the MILAGRO-2006 campaign: a case study of a major Mexico City outflow event using free-floating altitude-controlled balloons

    Get PDF
    One of the major objectives of the Megacities Initiative: Local And Global Research Observations (MILAGRO-2006) campaign was to investigate the long-range transport of polluted Mexico City Metropolitan Area (MCMA) outflow and determine its downwind impacts on air quality and climate. Six research aircraft, including the National Center for Atmospheric Research (NCAR) C-130, made extensive chemical, aerosol, and radiation measurements above MCMA and more than 1000 km downwind in order to characterize the evolution of the outflow as it aged and dispersed over the Mesa Alta, Sierra Madre Oriental, Coastal Plain, and Gulf of Mexico. As part of this effort, free-floating Controlled-Meteorological (CMET) balloons, commanded to change altitude via satellite, made repeated profile measurements of winds and state variables within the advecting outflow. In this paper, we present an analysis of the data from two CMET balloons that were launched near Mexico City on the afternoon of 18 March 2006 and floated downwind with the MCMA pollution for nearly 30 h. The repeating profile measurements show the evolving structure of the outflow in considerable detail: its stability and stratification, interaction with other air masses, mixing episodes, and dispersion into the regional background. Air parcel trajectories, computed directly from the balloon wind profiles, show three transport pathways on 18–19 March: (a) high-altitude advection of the top of the MCMA mixed layer, (b) mid-level outflow over the Sierra Madre Oriental followed by decoupling and isolated transport over the Gulf of Mexico, and (c) low-level outflow with entrainment into a cleaner northwesterly jet above the Coastal Plain. The C-130 aircraft intercepted the balloon-based trajectories three times on 19 March, once along each of these pathways; in all three cases, peaks in urban tracer concentrations and LIDAR backscatter are consistent with MCMA pollution. In comparison with the transport models used in the campaign, the balloon-based trajectories appear to shear the outflow far more uniformly and decouple it from the surface, thus forming a thin but expansive polluted layer over the Gulf of Mexico that is well aligned with the aircraft observations. These results provide critical context for the extensive aircraft measurements made during the 18–19 March MCMA outflow event and may have broader implications for modelling and understanding long-range transport

    Airborne observations of total RONO2: new constraints on the yield and lifetime of isoprene nitrates

    Get PDF
    Formation of isoprene nitrates (INs) is an important free radical chain termination step ending production of ozone and possibly affecting formation of secondary organic aerosol. Isoprene nitrates also represent a potentially large, unmeasured contribution to OH reactivity and are a major pathway for the removal of nitrogen oxides from the atmosphere. Current assessments indicate that formation rates of isoprene nitrates are uncertain to a factor of 2–3 and the subsequent fate of isoprene nitrates remains largely unconstrained by laboratory, field or modeling studies. Measurements of total alkyl and multifunctional nitrates (ΣANs), NO2, total peroxy nitrates (ΣPNs), HNO3, CH2O, isoprene and other VOC were obtained from the NASA DC-8 aircraft during summer 2004 over the continental US during the INTEX-NA campaign. These observations represent the first characterization of ΣANs over a wide range of land surface types and in the lower free troposphere. ΣANs were a significant, 12–20%, fraction of NOy throughout the experimental domain and ΣANs were more abundant when isoprene was high. We use the observed hydrocarbon species to calculate the relative contributions of ΣAN precursors to their production. These calculations indicate that isoprene represents at least three quarters of the ΣAN source in the summertime continental boundary layer of the US. An observed correlation between ΣANs and CH2O is used to place constraints on nitrate yields from isoprene oxidation, atmospheric lifetimes of the resulting nitrates and recycling efficiencies of nitrates during subsequent oxidation. We find reasonable fits to the data using sets of production rates, lifetimes and recycling efficiencies of INs as follows (4.4%, 16 h, 97%), (8%, 2.5 h, 79%) and (12%, 95 min, 67%). The analysis indicates that the lifetime of ΣANs as a pool of compounds is considerably longer than the lifetime of the individual isoprene nitrates to reaction with OH, implying that the organic nitrate functionality is at least partially maintained through a second oxidation cycle

    Overview of the Focused Isoprene eXperiment at the California Institute of Technology (FIXCIT): mechanistic chamber studies on the oxidation of biogenic compounds

    Get PDF
    The Focused Isoprene eXperiment at the California Institute of Technology (FIXCIT) was a collaborative atmospheric chamber campaign that occurred during January 2014. FIXCIT is the laboratory component of a synergistic field and laboratory effort aimed toward (1) better understanding the chemical details behind ambient observations relevant to the southeastern United States, (2) advancing the knowledge of atmospheric oxidation mechanisms of important biogenic hydrocarbons, and (3) characterizing the behavior of field instrumentation using authentic standards. Approximately 20 principal scientists from 14 academic and government institutions performed parallel measurements at a forested site in Alabama and at the atmospheric chambers at Caltech. During the 4 week campaign period, a series of chamber experiments was conducted to investigate the dark- and photo-induced oxidation of isoprene, α-pinene, methacrolein, pinonaldehyde, acylperoxy nitrates, isoprene hydroxy nitrates (ISOPN), isoprene hydroxy hydroperoxides (ISOPOOH), and isoprene epoxydiols (IEPOX) in a highly controlled and atmospherically relevant manner. Pinonaldehyde and isomer-specific standards of ISOPN, ISOPOOH, and IEPOX were synthesized and contributed by campaign participants, which enabled explicit exploration into the oxidation mechanisms and instrument responses for these important atmospheric compounds. The present overview describes the goals, experimental design, instrumental techniques, and preliminary observations from the campaign. This work provides context for forthcoming publications affiliated with the FIXCIT campaign. Insights from FIXCIT are anticipated to aid significantly in interpretation of field data and the revision of mechanisms currently implemented in regional and global atmospheric models

    An analysis of fast photochemistry over high northern latitudes during spring and summer using in-situ observations from ARCTAS and TOPSE

    Get PDF
    Observations of chemical constituents and meteorological quantities obtained during the two Arctic phases of the airborne campaign ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites) are analyzed using an observationally constrained steady state box model. Measurements of OH and HO<sub>2</sub> from the Penn State ATHOS instrument are compared to model predictions. Forty percent of OH measurements below 2 km are at the limit of detection during the spring phase (ARCTAS-A). While the median observed-to-calculated ratio is near one, both the scatter of observations and the model uncertainty for OH are at the magnitude of ambient values. During the summer phase (ARCTAS-B), model predictions of OH are biased low relative to observations and demonstrate a high sensitivity to the level of uncertainty in NO observations. Predictions of HO<sub>2</sub> using observed CH<sub>2</sub>O and H<sub>2</sub>O<sub>2</sub> as model constraints are up to a factor of two larger than observed. A temperature-dependent terminal loss rate of HO<sub>2</sub> to aerosol recently proposed in the literature is shown to be insufficient to reconcile these differences. A comparison of ARCTAS-A to the high latitude springtime portion of the 2000 TOPSE campaign (Tropospheric Ozone Production about the Spring Equinox) shows similar meteorological and chemical environments with the exception of peroxides; observations of H<sub>2</sub>O<sub>2</sub> during ARCTAS-A were 2.5 to 3 times larger than those during TOPSE. The cause of this difference in peroxides remains unresolved and has important implications for the Arctic HO<sub>x</sub> budget. Unconstrained model predictions for both phases indicate photochemistry alone is unable to simultaneously sustain observed levels of CH<sub>2</sub>O and H<sub>2</sub>O<sub>2</sub>; however when the model is constrained with observed CH<sub>2</sub>O, H<sub>2</sub>O<sub>2</sub> predictions from a range of rainout parameterizations bracket its observations. A mechanism suitable to explain observed concentrations of CH<sub>2</sub>O is uncertain. Free tropospheric observations of acetaldehyde (CH<sub>3</sub>CHO) are 2–3 times larger than its predictions, though constraint of the model to those observations is sufficient to account for less than half of the deficit in predicted CH<sub>2</sub>O. The box model calculates gross O<sub>3</sub> formation during spring to maximize from 1–4 km at 0.8 ppbv d<sup>−1</sup>, in agreement with estimates from TOPSE, and a gross production of 2–4 ppbv d<sup>−1</sup> in the boundary layer and upper troposphere during summer. Use of the lower observed levels of HO<sub>2</sub> in place of model predictions decreases the gross production by 25–50%. Net O<sub>3</sub> production is near zero throughout the ARCTAS-A troposphere, and is 1–2 ppbv in the boundary layer and upper altitudes during ARCTAS-B
    corecore